Towards a Fast Off-Line Static Malware Analysis Framework

Macdonald Chikapa, A. P. Namanya
{"title":"Towards a Fast Off-Line Static Malware Analysis Framework","authors":"Macdonald Chikapa, A. P. Namanya","doi":"10.1109/W-FICLOUD.2018.00035","DOIUrl":null,"url":null,"abstract":"The profitability in cybercrime activity has resulted into an exponential growth of malware numbers and complexity. This has led to both industry and academic research building malware research labs to allow for deeper malware analysis so that for more efficient detection techniques can be proposed. Extended malware study could lead to development of more advanced malware signatures, potentially resulting into designing of secure systems thus a resilient cyberspace. Malware classification and clustering based on malware families and traits is an important step in malware analysis. This paper presents a comparative study of file format hashes that are used in the industry is conducted in an effort towards suggesting an approach for faster and easier offline malware classification framework.","PeriodicalId":218683,"journal":{"name":"2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/W-FICLOUD.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The profitability in cybercrime activity has resulted into an exponential growth of malware numbers and complexity. This has led to both industry and academic research building malware research labs to allow for deeper malware analysis so that for more efficient detection techniques can be proposed. Extended malware study could lead to development of more advanced malware signatures, potentially resulting into designing of secure systems thus a resilient cyberspace. Malware classification and clustering based on malware families and traits is an important step in malware analysis. This paper presents a comparative study of file format hashes that are used in the industry is conducted in an effort towards suggesting an approach for faster and easier offline malware classification framework.
一个快速离线静态恶意软件分析框架
网络犯罪活动的盈利能力导致了恶意软件数量和复杂性的指数级增长。这导致工业界和学术界都建立了恶意软件研究实验室,以便进行更深入的恶意软件分析,从而提出更有效的检测技术。扩展恶意软件的研究可能导致更高级的恶意软件签名的发展,潜在地导致安全系统的设计,从而有弹性的网络空间。基于恶意软件家族和特征的恶意软件分类和聚类是恶意软件分析的重要步骤。本文对行业中使用的文件格式哈希进行了比较研究,旨在提出一种更快、更容易的离线恶意软件分类框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信