Effect of Rare Earth Doping on the Optical Quality of А2В6 Semiconductors

Y. Gnatenko
{"title":"Effect of Rare Earth Doping on the Optical Quality of А2В6 Semiconductors","authors":"Y. Gnatenko","doi":"10.33552/mcms.2019.01.000507","DOIUrl":null,"url":null,"abstract":"It is well known that rare earth elements (RE) have a characteristic configuration of their electron shell, namely, 4d104fn5s25p66s2 (n=1-14), where 4f-electrons form an unfilled electronic shell shielded by several filled shells [1,2]. Thus, doping of semiconductor materials with RE leads to the appearance of a system of discrete energy levels associated with the ground and excited states of RE ions. These states are strongly localized and weakly perceive the vibrations of the crystalline lattice. Therefore, the emission of RE ions, caused by optical transitions from excited to ground states of the ions, includes narrow lines that are commonly used for developing laser systems [3]. In addition, the development of LEDs for a wide spectral region requires using А3В5 semiconductors with wide band gaps doped with triply-charged RE ions. In this case, isovalent substitution of cations occurs.","PeriodicalId":297187,"journal":{"name":"Modern Concepts in Material Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Concepts in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33552/mcms.2019.01.000507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that rare earth elements (RE) have a characteristic configuration of their electron shell, namely, 4d104fn5s25p66s2 (n=1-14), where 4f-electrons form an unfilled electronic shell shielded by several filled shells [1,2]. Thus, doping of semiconductor materials with RE leads to the appearance of a system of discrete energy levels associated with the ground and excited states of RE ions. These states are strongly localized and weakly perceive the vibrations of the crystalline lattice. Therefore, the emission of RE ions, caused by optical transitions from excited to ground states of the ions, includes narrow lines that are commonly used for developing laser systems [3]. In addition, the development of LEDs for a wide spectral region requires using А3В5 semiconductors with wide band gaps doped with triply-charged RE ions. In this case, isovalent substitution of cations occurs.
稀土掺杂对А2В6半导体光学质量的影响
众所周知,稀土元素(RE)的电子壳层具有一个特征构型,即4d104fn5s25p66s2 (n=1-14),其中4f电子形成一个未填充的电子壳层,被几个填充的电子壳层所屏蔽[1,2]。因此,用稀土掺杂半导体材料会导致与稀土离子的基态和激发态相关的离散能级系统的出现。这些状态是强局域化的,对晶格的振动感知微弱。因此,由离子从激发态到基态的光学跃迁引起的RE离子发射包括通常用于开发激光系统的窄线[3]。此外,开发用于宽光谱区域的led需要使用А3В5半导体,这些半导体具有宽带隙,掺杂三电荷的RE离子。在这种情况下,发生了阳离子的等价取代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信