COGNI-neocognitron simulation software

A. Klofutar
{"title":"COGNI-neocognitron simulation software","authors":"A. Klofutar","doi":"10.1109/CNNA.1990.207508","DOIUrl":null,"url":null,"abstract":"The simulation software COGNI simulates the pattern recognition neural network neocognitron of K. Fukushima (1982). Due to its complexity, simulations can be carried out only on relatively powerful computer systems which are capable of high speed numeric processing and graphic display. There are two versions available, using the IBM PC-AT and the mu VAX II. Neocognitron is able to learn without a teacher. The response of the last layer in forward (afferent) paths is not affected by the pattern's position or by a small change in the shape or size of the stimulus pattern. Even stimuli corrupted with noise are successfully recognized. The autoassociation is also achieved in the last layer of backward (efferent) paths i.e. in the autoassociation plane.<<ETX>>","PeriodicalId":142909,"journal":{"name":"IEEE International Workshop on Cellular Neural Networks and their Applications","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Cellular Neural Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1990.207508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The simulation software COGNI simulates the pattern recognition neural network neocognitron of K. Fukushima (1982). Due to its complexity, simulations can be carried out only on relatively powerful computer systems which are capable of high speed numeric processing and graphic display. There are two versions available, using the IBM PC-AT and the mu VAX II. Neocognitron is able to learn without a teacher. The response of the last layer in forward (afferent) paths is not affected by the pattern's position or by a small change in the shape or size of the stimulus pattern. Even stimuli corrupted with noise are successfully recognized. The autoassociation is also achieved in the last layer of backward (efferent) paths i.e. in the autoassociation plane.<>
COGNI-neocognitron仿真软件
仿真软件COGNI模拟了K. Fukushima(1982)的模式识别神经网络neocognitron。由于其复杂性,仿真只能在具有高速数字处理和图形显示能力的相对强大的计算机系统上进行。有两个版本可用,使用IBM PC-AT和mu VAX II。Neocognitron能够在没有老师的情况下学习。前向(传入)路径中最后一层的响应不受图案位置或刺激图案形状或大小的微小变化的影响。即使受到噪音干扰的刺激也能被成功识别。自动关联也在反向(传出)路径的最后一层,即在自动关联平面中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信