Spatio-temporal deep learning for robotic visuomotor control

John M. Pierre
{"title":"Spatio-temporal deep learning for robotic visuomotor control","authors":"John M. Pierre","doi":"10.1109/ICCAR.2018.8384651","DOIUrl":null,"url":null,"abstract":"To perform accurate and smooth behaviors in dynamic environments with moving objects, robotic visuomotor control should include the ability to process spatio-temporal information. We propose a system that uses a spatio-temporal deep neural network (DNN), with video camera pixels as the only input, to handle all the visual perception and visuomotor control functions needed to perform robotic behaviors such as leader following. Our approach combines: (1) end-to-end deep learning for inferring motion control outputs from visual inputs, (2) multi-task learning for simultaneously producing multiple control outputs with the same DNN, and (3) spatio-temporal deep learning for perceiving motion across multiple video frames. We use driving simulations to quantitatively show that spatio-temporal DNNs increase driving accuracy and driving smoothness by improving machine perception of scene kinematics. Experiments conducted with mobile robots in a laboratory test track show real-time embedded systems performance comparable to human reaction times to visual stimuli, and indicate that a spatio-temporal deep learning robot is able to follow a leader for long periods of time, while keeping within lanes and avoiding obstacles.","PeriodicalId":106624,"journal":{"name":"2018 4th International Conference on Control, Automation and Robotics (ICCAR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR.2018.8384651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

To perform accurate and smooth behaviors in dynamic environments with moving objects, robotic visuomotor control should include the ability to process spatio-temporal information. We propose a system that uses a spatio-temporal deep neural network (DNN), with video camera pixels as the only input, to handle all the visual perception and visuomotor control functions needed to perform robotic behaviors such as leader following. Our approach combines: (1) end-to-end deep learning for inferring motion control outputs from visual inputs, (2) multi-task learning for simultaneously producing multiple control outputs with the same DNN, and (3) spatio-temporal deep learning for perceiving motion across multiple video frames. We use driving simulations to quantitatively show that spatio-temporal DNNs increase driving accuracy and driving smoothness by improving machine perception of scene kinematics. Experiments conducted with mobile robots in a laboratory test track show real-time embedded systems performance comparable to human reaction times to visual stimuli, and indicate that a spatio-temporal deep learning robot is able to follow a leader for long periods of time, while keeping within lanes and avoiding obstacles.
机器人视觉运动控制的时空深度学习
为了在具有运动物体的动态环境中执行准确和平滑的行为,机器人视觉运动控制应该包括处理时空信息的能力。我们提出了一个使用时空深度神经网络(DNN)的系统,以摄像机像素为唯一输入,处理执行机器人行为(如领导者跟随)所需的所有视觉感知和视觉运动控制功能。我们的方法结合了:(1)端到端深度学习,用于从视觉输入推断运动控制输出;(2)多任务学习,用于同时产生具有相同DNN的多个控制输出;(3)时空深度学习,用于感知跨多个视频帧的运动。我们使用驾驶模拟定量地表明,时空dnn通过改善机器对场景运动学的感知来提高驾驶精度和驾驶平稳性。在实验室测试轨道中对移动机器人进行的实验表明,实时嵌入式系统的性能与人类对视觉刺激的反应时间相当,并表明时空深度学习机器人能够长时间跟随领导者,同时保持在车道内并避开障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信