{"title":"Large-scale audio feature extraction and SVM for acoustic scene classification","authors":"Jürgen T. Geiger, Björn Schuller, G. Rigoll","doi":"10.1109/WASPAA.2013.6701857","DOIUrl":null,"url":null,"abstract":"This work describes a system for acoustic scene classification using large-scale audio feature extraction. It is our contribution to the Scene Classification track of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (D-CASE). The system classifies 30 second long recordings of 10 different acoustic scenes. From the highly variable recordings, a large number of spectral, cepstral, energy and voicing-related audio features are extracted. Using a sliding window approach, classification is performed on short windows. SVM are used to classify these short segments, and a majority voting scheme is employed to get a decision for longer recordings. On the official development set of the challenge, an accuracy of 73 % is achieved. SVM are compared with a nearest neighbour classifier and an approach called Latent Perceptual Indexing, whereby SVM achieve the best results. A feature analysis using the t-statistic shows that mainly Mel spectra are the most relevant features.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123
Abstract
This work describes a system for acoustic scene classification using large-scale audio feature extraction. It is our contribution to the Scene Classification track of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (D-CASE). The system classifies 30 second long recordings of 10 different acoustic scenes. From the highly variable recordings, a large number of spectral, cepstral, energy and voicing-related audio features are extracted. Using a sliding window approach, classification is performed on short windows. SVM are used to classify these short segments, and a majority voting scheme is employed to get a decision for longer recordings. On the official development set of the challenge, an accuracy of 73 % is achieved. SVM are compared with a nearest neighbour classifier and an approach called Latent Perceptual Indexing, whereby SVM achieve the best results. A feature analysis using the t-statistic shows that mainly Mel spectra are the most relevant features.