Large-scale audio feature extraction and SVM for acoustic scene classification

Jürgen T. Geiger, Björn Schuller, G. Rigoll
{"title":"Large-scale audio feature extraction and SVM for acoustic scene classification","authors":"Jürgen T. Geiger, Björn Schuller, G. Rigoll","doi":"10.1109/WASPAA.2013.6701857","DOIUrl":null,"url":null,"abstract":"This work describes a system for acoustic scene classification using large-scale audio feature extraction. It is our contribution to the Scene Classification track of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (D-CASE). The system classifies 30 second long recordings of 10 different acoustic scenes. From the highly variable recordings, a large number of spectral, cepstral, energy and voicing-related audio features are extracted. Using a sliding window approach, classification is performed on short windows. SVM are used to classify these short segments, and a majority voting scheme is employed to get a decision for longer recordings. On the official development set of the challenge, an accuracy of 73 % is achieved. SVM are compared with a nearest neighbour classifier and an approach called Latent Perceptual Indexing, whereby SVM achieve the best results. A feature analysis using the t-statistic shows that mainly Mel spectra are the most relevant features.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123

Abstract

This work describes a system for acoustic scene classification using large-scale audio feature extraction. It is our contribution to the Scene Classification track of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (D-CASE). The system classifies 30 second long recordings of 10 different acoustic scenes. From the highly variable recordings, a large number of spectral, cepstral, energy and voicing-related audio features are extracted. Using a sliding window approach, classification is performed on short windows. SVM are used to classify these short segments, and a majority voting scheme is employed to get a decision for longer recordings. On the official development set of the challenge, an accuracy of 73 % is achieved. SVM are compared with a nearest neighbour classifier and an approach called Latent Perceptual Indexing, whereby SVM achieve the best results. A feature analysis using the t-statistic shows that mainly Mel spectra are the most relevant features.
大规模音频特征提取与支持向量机声学场景分类
本文描述了一个基于大规模音频特征提取的声学场景分类系统。这是我们对IEEE AASP声学场景和事件的检测和分类挑战(D-CASE)的场景分类轨道的贡献。该系统对10个不同的声学场景的30秒长的录音进行分类。从高度可变的录音中,提取了大量的频谱、倒谱、能量和语音相关的音频特征。使用滑动窗口方法,对短窗口进行分类。使用支持向量机对这些较短的录音片段进行分类,并采用多数投票方案对较长的录音片段进行决策。在挑战的官方开发集上,准确率达到了73%。SVM与最近邻分类器和一种称为潜在感知索引的方法进行了比较,其中SVM获得了最佳结果。使用t统计量进行特征分析表明,Mel谱是最相关的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信