Exploring The Dimension of DNN Techniques For Text Categorization Using NLP

Varsha Mittal, Durgaprasad Gangodkar, B. Pant
{"title":"Exploring The Dimension of DNN Techniques For Text Categorization Using NLP","authors":"Varsha Mittal, Durgaprasad Gangodkar, B. Pant","doi":"10.1109/ICACCS48705.2020.9074228","DOIUrl":null,"url":null,"abstract":"The natural language processing (NLP) area has been magically transformed by the Deep Neural Network (DNN). The two variations of Neural Networks, Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) can handle the different NLP tasks effectively. CNN is based on feature extraction using N-grams at higher levels. The RNN can be effectively used to model the sequential information. Choosing a neural technique for the various NLP tasks is always a challenge. The paper focuses on the evaluating the performance of the two DNN techniques CNN and RNN for the various NLP tasks, so that appropriate technique can be selected.","PeriodicalId":439003,"journal":{"name":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS48705.2020.9074228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The natural language processing (NLP) area has been magically transformed by the Deep Neural Network (DNN). The two variations of Neural Networks, Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) can handle the different NLP tasks effectively. CNN is based on feature extraction using N-grams at higher levels. The RNN can be effectively used to model the sequential information. Choosing a neural technique for the various NLP tasks is always a challenge. The paper focuses on the evaluating the performance of the two DNN techniques CNN and RNN for the various NLP tasks, so that appropriate technique can be selected.
基于NLP的文本分类深度神经网络技术的维度探索
自然语言处理(NLP)领域已经被深度神经网络(DNN)神奇地改变了。卷积神经网络(Convolutional Neural Network, CNN)和递归神经网络(Recurrent Neural Network, RNN)是神经网络的两种变体,可以有效地处理不同的NLP任务。CNN是基于在更高层次上使用n -gram的特征提取。RNN可以有效地对序列信息进行建模。为各种NLP任务选择一种神经技术一直是一个挑战。本文重点评价了CNN和RNN两种深度神经网络技术在各种自然语言处理任务中的性能,以便选择合适的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信