Evolutionary path planning for unmanned aerial vehicles cooperation

ICINCO-RA Pub Date : 1900-01-01 DOI:10.5220/0001642200670075
I. Nikolos, N. Tsourveloudis
{"title":"Evolutionary path planning for unmanned aerial vehicles cooperation","authors":"I. Nikolos, N. Tsourveloudis","doi":"10.5220/0001642200670075","DOIUrl":null,"url":null,"abstract":"We suggest an evolutionary based off-line/on-line path planner for cooperating Unmanned Aerial Vehicles (UAVs) that takes into account the environment characteristics and the flight envelope and mission constraints of the cooperating UAVs. The scenario under consideration is the following: a number of UAVs are launched from the same or different known initial locations. The main issue is to produce 3-D trajectories that ensure a collision free operation with respect to mission constraints. The path planner produces curved routes that are represented by 3-D B-Spline curves. Two types of planner are discussed: The off-line planner generates collision free paths in environments with known characteristics and flight restrictions. The on-line planner, which is based on the off-line one, generates collision free paths in unknown static environments, by using acquired information from the UAV’s on-board sensors. This information is exchanged between the cooperating UAVs in order to maximize the knowledge of the environment. Both off-line and on-line path planning problems are formulated as optimization problems, with a Differential Evolution algorithm to serve as the optimizer.","PeriodicalId":302311,"journal":{"name":"ICINCO-RA","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICINCO-RA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0001642200670075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We suggest an evolutionary based off-line/on-line path planner for cooperating Unmanned Aerial Vehicles (UAVs) that takes into account the environment characteristics and the flight envelope and mission constraints of the cooperating UAVs. The scenario under consideration is the following: a number of UAVs are launched from the same or different known initial locations. The main issue is to produce 3-D trajectories that ensure a collision free operation with respect to mission constraints. The path planner produces curved routes that are represented by 3-D B-Spline curves. Two types of planner are discussed: The off-line planner generates collision free paths in environments with known characteristics and flight restrictions. The on-line planner, which is based on the off-line one, generates collision free paths in unknown static environments, by using acquired information from the UAV’s on-board sensors. This information is exchanged between the cooperating UAVs in order to maximize the knowledge of the environment. Both off-line and on-line path planning problems are formulated as optimization problems, with a Differential Evolution algorithm to serve as the optimizer.
无人机合作的进化路径规划
提出了一种基于进化的无人机离线/在线路径规划方法,该方法考虑了协作无人机的环境特性、飞行包线和任务约束。正在考虑的情况如下:许多无人机从相同或不同的已知初始位置发射。主要问题是生成三维轨迹,以确保在任务约束下无碰撞操作。路径规划器生成由3-D b样条曲线表示的曲线路径。讨论了两种类型的规划器:离线规划器在已知特征和飞行限制的环境中生成无碰撞路径。基于离线规划器的在线规划器,利用无人机机载传感器获取的信息,生成未知静态环境下的无碰撞路径。这些信息在合作的无人机之间交换,以便最大限度地了解环境。将离线和在线路径规划问题表述为优化问题,并采用差分进化算法作为优化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信