Statistical Approach for Text and Non-text Classifier in Off-line Handwritten Document

B. Pravalpruk, S. Watcharabutsarakham
{"title":"Statistical Approach for Text and Non-text Classifier in Off-line Handwritten Document","authors":"B. Pravalpruk, S. Watcharabutsarakham","doi":"10.1109/ecti-con49241.2020.9158334","DOIUrl":null,"url":null,"abstract":"Hand writing and hand drawing are natural ways to take note. A pen and papers are used to make a note for a long time. In digital era, the notes are often converted into a durable and formal format for further use. Therefore, the conversion application was developed in many fields with many skill such as handwritten recognition, object recognition, object classification, and others. In this paper, we demonstrate a method to classify connected components as flowchart and text. We use the Online Handwritten Flowchart Dataset (OHFD) which contained 419 handwritten flowcharts to benchmark our methodology. The result shown our classification technique get F1-score 77.6%.","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"46 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecti-con49241.2020.9158334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hand writing and hand drawing are natural ways to take note. A pen and papers are used to make a note for a long time. In digital era, the notes are often converted into a durable and formal format for further use. Therefore, the conversion application was developed in many fields with many skill such as handwritten recognition, object recognition, object classification, and others. In this paper, we demonstrate a method to classify connected components as flowchart and text. We use the Online Handwritten Flowchart Dataset (OHFD) which contained 419 handwritten flowcharts to benchmark our methodology. The result shown our classification technique get F1-score 77.6%.
离线手写文档中文本和非文本分类器的统计方法
手写和手绘是自然的记录方式。笔和纸是用来长时间记笔记的。在数字时代,笔记通常被转换成耐用和正式的格式以供进一步使用。因此,在手写体识别、对象识别、对象分类等多个领域开发了转换应用程序。在本文中,我们展示了一种将连接组件分类为流程图和文本的方法。我们使用包含419个手写流程图的在线手写流程图数据集(OHFD)来测试我们的方法。结果表明,我们的分类技术达到了f1 - 77.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信