The Ordinal-Recursive Complexity of Timed-arc Petri Nets, Data Nets, and Other Enriched Nets

S. Haddad, S. Schmitz, P. Schnoebelen
{"title":"The Ordinal-Recursive Complexity of Timed-arc Petri Nets, Data Nets, and Other Enriched Nets","authors":"S. Haddad, S. Schmitz, P. Schnoebelen","doi":"10.1109/LICS.2012.46","DOIUrl":null,"url":null,"abstract":"We show how to reliably compute fast-growing functions with timed-arc Petri nets and data nets. This construction provides ordinal-recursive lower bounds on the complexity of the main decidable properties (safety, termination, regular simulation, etc.) of these models. Since these new lower bounds match the upper bounds that one can derive from wqo theory, they precisely characterise the computational power of these so-called \"enriched\" nets.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

We show how to reliably compute fast-growing functions with timed-arc Petri nets and data nets. This construction provides ordinal-recursive lower bounds on the complexity of the main decidable properties (safety, termination, regular simulation, etc.) of these models. Since these new lower bounds match the upper bounds that one can derive from wqo theory, they precisely characterise the computational power of these so-called "enriched" nets.
时间弧Petri网、数据网和其他充实网的有序递归复杂度
我们展示了如何用时弧Petri网和数据网可靠地计算快速增长的函数。这种构造提供了这些模型的主要可判定性质(安全性、终止性、正则模拟等)的复杂度的有序递归下界。由于这些新的下界与人们可以从wq理论中得出的上界相匹配,它们精确地描述了这些所谓的“浓缩”网络的计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信