Model based 3D point cloud segmentation for automated selective broccoli harvesting*

Hector A. Montes, Grzegorz Cielniak, T. Duckett
{"title":"Model based 3D point cloud segmentation for automated selective broccoli harvesting*","authors":"Hector A. Montes, Grzegorz Cielniak, T. Duckett","doi":"10.31256/UKRAS19.7","DOIUrl":null,"url":null,"abstract":"The 3D point cloud data was captured in outdoor fields under different weather conditions in 4 locations: 2 in the UK, 1 in Spain, and 1 more in USA using the Kinect 2 sensor. Histograms of the reference models used in our algorithm. A FPFH descriptor [1], based on a set of angular features, is computed for each data point. The descriptor is then matched to both reference models and the difference provides the final classification score. Reference models","PeriodicalId":424229,"journal":{"name":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/UKRAS19.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The 3D point cloud data was captured in outdoor fields under different weather conditions in 4 locations: 2 in the UK, 1 in Spain, and 1 more in USA using the Kinect 2 sensor. Histograms of the reference models used in our algorithm. A FPFH descriptor [1], based on a set of angular features, is computed for each data point. The descriptor is then matched to both reference models and the difference provides the final classification score. Reference models
基于模型的3D点云分割,用于自动选择西兰花收获*
3D点云数据是在不同天气条件下在4个地点的户外场地捕获的:2个在英国,1个在西班牙,1个在美国,使用Kinect 2传感器。我们算法中使用的参考模型的直方图。基于一组角度特征,为每个数据点计算FPFH描述符[1]。然后将描述符与两个参考模型进行匹配,差异提供最终的分类分数。参考模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信