{"title":"Verification of programs under the release-acquire semantics","authors":"P. Abdulla, Jatin Arora, M. Atig, S. Krishna","doi":"10.1145/3314221.3314649","DOIUrl":null,"url":null,"abstract":"We address the verification of concurrent programs running under the release-acquire (RA) semantics. We show that the reachability problem is undecidable even in the case where the input program is finite-state. Given this undecidability, we follow the spirit of the work on context-bounded analysis for detecting bugs in programs under the classical SC model, and propose an under-approximate reachability analysis for the case of RA. To this end, we propose a novel notion, called view-switching, and provide a code-to-code translation from an input program under RA to a program under SC. This leads to a reduction, in polynomial time, of the bounded view-switching reachability problem under RA to the bounded context-switching problem under SC. We have implemented a prototype tool VBMC and tested it on a set of benchmarks, demonstrating that many bugs in programs can be found using a small number of view switches.","PeriodicalId":441774,"journal":{"name":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314221.3314649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
We address the verification of concurrent programs running under the release-acquire (RA) semantics. We show that the reachability problem is undecidable even in the case where the input program is finite-state. Given this undecidability, we follow the spirit of the work on context-bounded analysis for detecting bugs in programs under the classical SC model, and propose an under-approximate reachability analysis for the case of RA. To this end, we propose a novel notion, called view-switching, and provide a code-to-code translation from an input program under RA to a program under SC. This leads to a reduction, in polynomial time, of the bounded view-switching reachability problem under RA to the bounded context-switching problem under SC. We have implemented a prototype tool VBMC and tested it on a set of benchmarks, demonstrating that many bugs in programs can be found using a small number of view switches.