A Kalman-based encoder for electrical stimulation modulation in a thalamic network model

A. Jawwad, Hossam H. Abolfotuh, Bassem A. Abdullah, Hani M. K. Mahdi, S. Eldawlatly
{"title":"A Kalman-based encoder for electrical stimulation modulation in a thalamic network model","authors":"A. Jawwad, Hossam H. Abolfotuh, Bassem A. Abdullah, Hani M. K. Mahdi, S. Eldawlatly","doi":"10.1109/BIBE.2015.7367642","DOIUrl":null,"url":null,"abstract":"Restoring vision is no longer impossible as a result of recent advances in neural interfaces. Successful demonstrations of retinal implants motivate the development of more effective visual prostheses. The thalamic Lateral Geniculate Nucleus (LGN) is one potential deep-brain interfacing site for visual prostheses. A main challenge in developing thalamic as well as other visual prostheses is optimizing the parameters of electrical stimulation. This paper introduces a Kalman-based optimal encoder whose function is to determine the optimal electrical stimulation parameters required to induce a certain visual sensation. The performance of the proposed approach is demonstrated using a probabilistic model of LGN neurons. Results demonstrate a significant similarity between neuronal responses obtained using electrical stimulation and the responses obtained using the corresponding visual stimuli with a mean correlation of 0.62 (P <; 0.01, n = 54). These results indicate the efficacy of the proposed optimal encoder in driving LGN neurons to induce visual sensations.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Restoring vision is no longer impossible as a result of recent advances in neural interfaces. Successful demonstrations of retinal implants motivate the development of more effective visual prostheses. The thalamic Lateral Geniculate Nucleus (LGN) is one potential deep-brain interfacing site for visual prostheses. A main challenge in developing thalamic as well as other visual prostheses is optimizing the parameters of electrical stimulation. This paper introduces a Kalman-based optimal encoder whose function is to determine the optimal electrical stimulation parameters required to induce a certain visual sensation. The performance of the proposed approach is demonstrated using a probabilistic model of LGN neurons. Results demonstrate a significant similarity between neuronal responses obtained using electrical stimulation and the responses obtained using the corresponding visual stimuli with a mean correlation of 0.62 (P <; 0.01, n = 54). These results indicate the efficacy of the proposed optimal encoder in driving LGN neurons to induce visual sensations.
一种基于卡尔曼的丘脑网络模型电刺激调制编码器
由于神经接口的最新进展,恢复视力不再是不可能的。视网膜植入物的成功演示激发了更有效的视觉假体的发展。丘脑外侧膝状核(LGN)是一种潜在的视觉假体脑深部界面部位。开发丘脑和其他视觉假体的主要挑战是优化电刺激参数。本文介绍了一种基于卡尔曼的最优编码器,其功能是确定引起某种视觉感觉所需的最优电刺激参数。利用LGN神经元的概率模型证明了该方法的性能。结果表明,使用电刺激获得的神经元反应与使用相应的视觉刺激获得的神经元反应之间存在显著的相似性,平均相关性为0.62 (P <;0.01, n = 54)。这些结果表明所提出的最优编码器在驱动LGN神经元诱导视觉感觉方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信