Semi-autonomous reference data generation for perception performance evaluation

T. Tatschke, Franziska Färber, E. Fuchs, Leonhard F. Walchshäusl, R. Lindl
{"title":"Semi-autonomous reference data generation for perception performance evaluation","authors":"T. Tatschke, Franziska Färber, E. Fuchs, Leonhard F. Walchshäusl, R. Lindl","doi":"10.1109/ICIF.2007.4408000","DOIUrl":null,"url":null,"abstract":"In the development phase of perception systems (e.g. for advanced driver assistance systems) general interest is pointing towards the performance of the respective detection and tracking algorithms. One common way to evaluate such systems relies on simulated data which is used as a reference. We present a semi-autonomous method, which allows the extraction of reference data from sensor recordings (including data at least from a camera and a distance measuring sensor device). Furthermore, we show how to combine these reference data with the output from the object detection system and how to derive performance statistics (detection and miss rates) of the system. As the generated reference information can be stored along with the sensor recordings, this method also facilitates the comparison of different software versions or algorithm parameters.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the development phase of perception systems (e.g. for advanced driver assistance systems) general interest is pointing towards the performance of the respective detection and tracking algorithms. One common way to evaluate such systems relies on simulated data which is used as a reference. We present a semi-autonomous method, which allows the extraction of reference data from sensor recordings (including data at least from a camera and a distance measuring sensor device). Furthermore, we show how to combine these reference data with the output from the object detection system and how to derive performance statistics (detection and miss rates) of the system. As the generated reference information can be stored along with the sensor recordings, this method also facilitates the comparison of different software versions or algorithm parameters.
用于感知性能评估的半自主参考数据生成
在感知系统的开发阶段(例如高级驾驶员辅助系统),人们普遍关注的是各自检测和跟踪算法的性能。评估这类系统的一种常用方法依赖于用作参考的模拟数据。我们提出了一种半自主的方法,允许从传感器记录中提取参考数据(至少包括来自相机和距离测量传感器设备的数据)。此外,我们还展示了如何将这些参考数据与目标检测系统的输出结合起来,以及如何导出系统的性能统计(检测率和漏检率)。由于生成的参考信息可以随传感器记录一起存储,该方法也便于不同软件版本或算法参数的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信