A novel compression algorithm for IMFs of Hilbert-Huang transform

Ying-Jou Chen, Jian-Jiun Ding, Szu-Wei Fu
{"title":"A novel compression algorithm for IMFs of Hilbert-Huang transform","authors":"Ying-Jou Chen, Jian-Jiun Ding, Szu-Wei Fu","doi":"10.1109/ICDSP.2014.6900835","DOIUrl":null,"url":null,"abstract":"The intrinsic mode function (IMF) derived from empirical mode decomposition (EMD) of the Hilbert-Huang transform process is useful for time-variant signal analysis. In this paper, a novel algorithm for IMF compression is proposed. Instead of recording all of the extreme points, we just encode a part of the extreme points while the locations and amplitudes of the other extreme points are predicted. Moreover, the residue of interpolation is encoded by the prediction technique and the adaptive arithmetic coding scheme. Simulations show that the proposed algorithm is efficient for encoding the IMF and very effective for compressing vocal signals and biomedical signals.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"83 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The intrinsic mode function (IMF) derived from empirical mode decomposition (EMD) of the Hilbert-Huang transform process is useful for time-variant signal analysis. In this paper, a novel algorithm for IMF compression is proposed. Instead of recording all of the extreme points, we just encode a part of the extreme points while the locations and amplitudes of the other extreme points are predicted. Moreover, the residue of interpolation is encoded by the prediction technique and the adaptive arithmetic coding scheme. Simulations show that the proposed algorithm is efficient for encoding the IMF and very effective for compressing vocal signals and biomedical signals.
一种新的Hilbert-Huang变换IMFs压缩算法
由Hilbert-Huang变换过程的经验模态分解(EMD)导出的本征模态函数(IMF)可用于时变信号分析。本文提出了一种新的IMF压缩算法。我们不需要记录所有的极值点,而只需对极值点的一部分进行编码,同时预测其他极值点的位置和幅度。利用预测技术和自适应算法对插值残差进行编码。仿真结果表明,该算法对IMF编码是有效的,对语音信号和生物医学信号的压缩是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信