Clustering County-Wise COVID-19 Dynamics in North Carolina

M. Park, Seong‐Tae Kim
{"title":"Clustering County-Wise COVID-19 Dynamics in North Carolina","authors":"M. Park, Seong‐Tae Kim","doi":"10.1109/CSCI51800.2020.00157","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has caused unprecedented impacts along with an enormous number of confirmed cases and deaths in the U.S. This study aims to identify hidden clusters among counties in North Carolina using the COVID-19 data. Since individual states implement their own policies to cope with the COVID-19 pandemic, our study is limited to a single state, North Carolina. We incorporated two clustering techniques, dynamic time warping and deep learning autoeconder. These clustering techniques identified similar upper-level hierarchical clusters separating three metropolitan areas and other regions with slightly different sub-clusters in the county-wise COVID-19 data. Our findings further understanding of county-wise COVID-19 dynamics and its implication.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic has caused unprecedented impacts along with an enormous number of confirmed cases and deaths in the U.S. This study aims to identify hidden clusters among counties in North Carolina using the COVID-19 data. Since individual states implement their own policies to cope with the COVID-19 pandemic, our study is limited to a single state, North Carolina. We incorporated two clustering techniques, dynamic time warping and deep learning autoeconder. These clustering techniques identified similar upper-level hierarchical clusters separating three metropolitan areas and other regions with slightly different sub-clusters in the county-wise COVID-19 data. Our findings further understanding of county-wise COVID-19 dynamics and its implication.
北卡罗来纳州县级COVID-19动态聚集
新冠肺炎疫情在美国造成了前所未有的影响,大量确诊病例和死亡病例。该研究旨在利用新冠肺炎数据识别北卡罗来纳州各县之间隐藏的群集。由于各州实施自己的政策来应对COVID-19大流行,我们的研究仅限于北卡罗来纳州一个州。我们结合了两种聚类技术,动态时间翘曲和深度学习自动思考。这些聚类技术确定了类似的上层分层聚类,将三个大都市区和其他地区分开,在县级COVID-19数据中,这些地区的子聚类略有不同。我们的研究结果进一步了解了国家层面的COVID-19动态及其含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信