Challenges in the stabilization of a satellite using Controlled Lagrangians I: Unbalance

P. Haghi, M. Ghaffari-Saadat
{"title":"Challenges in the stabilization of a satellite using Controlled Lagrangians I: Unbalance","authors":"P. Haghi, M. Ghaffari-Saadat","doi":"10.1109/CCA.2009.5281034","DOIUrl":null,"url":null,"abstract":"We discuss the stabilization of an unbalanced satellite in a gravitational field using the method of Controlled Lagrangians. The considered system can be classified as an Euler-Poincare mechanical system. Therefore, for the purpose of stabilization, we employ the stability analysis of Euler-Poincare mechanical systems that was extended to systems with non-zero potential energies in Part I of this paper. The effectiveness of the stabilizing law is verified through simulations. In addition, we demonstrate the capability of the method of Controlled Lagrangians to cope with the issue of actuator saturation.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"404 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5281034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We discuss the stabilization of an unbalanced satellite in a gravitational field using the method of Controlled Lagrangians. The considered system can be classified as an Euler-Poincare mechanical system. Therefore, for the purpose of stabilization, we employ the stability analysis of Euler-Poincare mechanical systems that was extended to systems with non-zero potential energies in Part I of this paper. The effectiveness of the stabilizing law is verified through simulations. In addition, we demonstrate the capability of the method of Controlled Lagrangians to cope with the issue of actuator saturation.
利用可控拉格朗日量稳定卫星的挑战I:不平衡
利用可控拉格朗日方法讨论了非平衡卫星在引力场中的稳定问题。所考虑的系统可以归类为欧拉-庞加莱机械系统。因此,为了达到稳定的目的,我们采用了本文第一部分中推广到非零势能系统的欧拉-庞加莱力学系统的稳定性分析。通过仿真验证了该稳定律的有效性。此外,我们还证明了控制拉格朗日量方法处理执行器饱和问题的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信