A Lower Bound on the Dimension of Bicubic Spline Spaces over T-meshes

Liangbing Jin
{"title":"A Lower Bound on the Dimension of Bicubic Spline Spaces over T-meshes","authors":"Liangbing Jin","doi":"10.1109/IFITA.2010.269","DOIUrl":null,"url":null,"abstract":"In this paper, we discusses the dimensions of the bicubic spline spaces over T-meshes. Specially, we use two concepts: extension of T-meshes and spline spaces with homogeneous boundary conditions. In the dimension analysis, the important technique is linear space embedding with the operator of mixed partial derivative, which embeds the space of higher order into the space of lower order. Similar with the discussion of the dimension of biquadratic spline spaces over T-meshes, the necessary and sufficient conditions are described by the operator. Using the characteristic of T-meshes, we can reduce the number of conditions. With this method, a dimension lower bound of bicubic spline spaces over regular T-meshes can be provided. It is only depends on the topology of the T-meshes.","PeriodicalId":393802,"journal":{"name":"2010 International Forum on Information Technology and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Forum on Information Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFITA.2010.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we discusses the dimensions of the bicubic spline spaces over T-meshes. Specially, we use two concepts: extension of T-meshes and spline spaces with homogeneous boundary conditions. In the dimension analysis, the important technique is linear space embedding with the operator of mixed partial derivative, which embeds the space of higher order into the space of lower order. Similar with the discussion of the dimension of biquadratic spline spaces over T-meshes, the necessary and sufficient conditions are described by the operator. Using the characteristic of T-meshes, we can reduce the number of conditions. With this method, a dimension lower bound of bicubic spline spaces over regular T-meshes can be provided. It is only depends on the topology of the T-meshes.
t网格上双三次样条空间维数的下界
本文讨论了t网格上双三次样条空间的维数。特别地,我们使用了两个概念:t网格的扩展和齐次边界条件下的样条空间。在维数分析中,重要的技术是利用混合偏导数算子进行线性空间嵌入,将高阶空间嵌入到低阶空间中。与t网格上双二次样条空间维数的讨论类似,用算子描述了其充要条件。利用t型网格的特性,我们可以减少条件的数量。利用该方法,可以给出正则t网格上双三次样条空间的维数下界。它只取决于t型网格的拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信