A modified reptile search algorithm for parametric estimation of fractional order model of lithium battery

Jie Ding, Shimeng Huang, Yuefei Hao, Min Xiao
{"title":"A modified reptile search algorithm for parametric estimation of fractional order model of lithium battery","authors":"Jie Ding, Shimeng Huang, Yuefei Hao, Min Xiao","doi":"10.1002/oca.3034","DOIUrl":null,"url":null,"abstract":"In this paper, a Levy reptile search algorithm (LRSA) is proposed to improve the global search capability and convergence speed of reptile search algorithm which has advantages in solving single‐modal, multi‐modal and composite problems. Firstly, circle chaotic mapping is introduced to make the initial distribution of population more uniform and diversified. Secondly, Levy flight strategy is employed in the global search, which can improve the accuracy and convergence speed. In order to test and verify the optimization performance of the LRSA, 12 benchmark functions are tested and compared with four other intelligent optimization algorithms. It can be seen that LRSA is effective and advantageous in average convergence speed. In addition, the proposed LRSA is applied to a fractional order model identification of lithium battery with a very small error (less than 2%). The experimental results show that the LRSA can effectively estimate the parameters of the fractional order model and aid to state of charge and state of health estimation.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a Levy reptile search algorithm (LRSA) is proposed to improve the global search capability and convergence speed of reptile search algorithm which has advantages in solving single‐modal, multi‐modal and composite problems. Firstly, circle chaotic mapping is introduced to make the initial distribution of population more uniform and diversified. Secondly, Levy flight strategy is employed in the global search, which can improve the accuracy and convergence speed. In order to test and verify the optimization performance of the LRSA, 12 benchmark functions are tested and compared with four other intelligent optimization algorithms. It can be seen that LRSA is effective and advantageous in average convergence speed. In addition, the proposed LRSA is applied to a fractional order model identification of lithium battery with a very small error (less than 2%). The experimental results show that the LRSA can effectively estimate the parameters of the fractional order model and aid to state of charge and state of health estimation.
锂电池分数阶模型参数估计的改进爬行动物搜索算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信