Accelerating CNN-RNN Based Machine Health Monitoring on FPGA

Xiaoyu Feng, Jinshan Yue, Qingwei Guo, Huazhong Yang, Yongpan Liu
{"title":"Accelerating CNN-RNN Based Machine Health Monitoring on FPGA","authors":"Xiaoyu Feng, Jinshan Yue, Qingwei Guo, Huazhong Yang, Yongpan Liu","doi":"10.1109/AICAS.2019.8771482","DOIUrl":null,"url":null,"abstract":"Emerging artificial intelligence brings new opportunities for embedded machine health monitoring systems. However, previous work mainly focus on algorithm improvement and ignore the software-hardware co-design. This paper proposes a CNN-RNN algorithm for remaining useful life (RUL) prediction, with hardware optimization for practical deployment. The CNN-RNN algorithm combines the feature extraction ability of CNN and the sequential processing ability of RNN, which shows 23%–53% improvement on the CMAPSS dataset. This algorithm also considers hardware implementation overhead and an FPGA based accelerator is developed. The accelerator adopts kernel-optimized design to utilize data reuse and reduce memory accesses. It enables real-time response and 5.89GOPs/W energy efficiency within small size and cost overhead. The FPGA implementation shows 15× CNN speedup and 9× overall speedup compared with the embedded processor Cortex-A9.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Emerging artificial intelligence brings new opportunities for embedded machine health monitoring systems. However, previous work mainly focus on algorithm improvement and ignore the software-hardware co-design. This paper proposes a CNN-RNN algorithm for remaining useful life (RUL) prediction, with hardware optimization for practical deployment. The CNN-RNN algorithm combines the feature extraction ability of CNN and the sequential processing ability of RNN, which shows 23%–53% improvement on the CMAPSS dataset. This algorithm also considers hardware implementation overhead and an FPGA based accelerator is developed. The accelerator adopts kernel-optimized design to utilize data reuse and reduce memory accesses. It enables real-time response and 5.89GOPs/W energy efficiency within small size and cost overhead. The FPGA implementation shows 15× CNN speedup and 9× overall speedup compared with the embedded processor Cortex-A9.
FPGA加速基于CNN-RNN的机器健康监测
新兴的人工智能为嵌入式机器健康监测系统带来了新的机遇。然而,以往的工作主要集中在算法改进上,忽视了软硬件协同设计。本文提出了一种基于CNN-RNN的剩余使用寿命(RUL)预测算法,并对实际部署进行了硬件优化。CNN-RNN算法结合了CNN的特征提取能力和RNN的顺序处理能力,在CMAPSS数据集上表现出23%-53%的提升。该算法还考虑了硬件实现开销,并开发了基于FPGA的加速器。加速器采用内核优化设计,利用数据重用,减少内存访问。它在小尺寸和成本开销下实现实时响应和5.89GOPs/W的能源效率。与嵌入式处理器Cortex-A9相比,FPGA实现的CNN速度提高了15倍,总体速度提高了9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信