Xiaoyu Feng, Jinshan Yue, Qingwei Guo, Huazhong Yang, Yongpan Liu
{"title":"Accelerating CNN-RNN Based Machine Health Monitoring on FPGA","authors":"Xiaoyu Feng, Jinshan Yue, Qingwei Guo, Huazhong Yang, Yongpan Liu","doi":"10.1109/AICAS.2019.8771482","DOIUrl":null,"url":null,"abstract":"Emerging artificial intelligence brings new opportunities for embedded machine health monitoring systems. However, previous work mainly focus on algorithm improvement and ignore the software-hardware co-design. This paper proposes a CNN-RNN algorithm for remaining useful life (RUL) prediction, with hardware optimization for practical deployment. The CNN-RNN algorithm combines the feature extraction ability of CNN and the sequential processing ability of RNN, which shows 23%–53% improvement on the CMAPSS dataset. This algorithm also considers hardware implementation overhead and an FPGA based accelerator is developed. The accelerator adopts kernel-optimized design to utilize data reuse and reduce memory accesses. It enables real-time response and 5.89GOPs/W energy efficiency within small size and cost overhead. The FPGA implementation shows 15× CNN speedup and 9× overall speedup compared with the embedded processor Cortex-A9.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Emerging artificial intelligence brings new opportunities for embedded machine health monitoring systems. However, previous work mainly focus on algorithm improvement and ignore the software-hardware co-design. This paper proposes a CNN-RNN algorithm for remaining useful life (RUL) prediction, with hardware optimization for practical deployment. The CNN-RNN algorithm combines the feature extraction ability of CNN and the sequential processing ability of RNN, which shows 23%–53% improvement on the CMAPSS dataset. This algorithm also considers hardware implementation overhead and an FPGA based accelerator is developed. The accelerator adopts kernel-optimized design to utilize data reuse and reduce memory accesses. It enables real-time response and 5.89GOPs/W energy efficiency within small size and cost overhead. The FPGA implementation shows 15× CNN speedup and 9× overall speedup compared with the embedded processor Cortex-A9.