1292 A reproducible pipeline for analysis of multiplex imaging (MIBI) data with application to uncovering novel features of the tumor-immune microenvironment

Jessica Maxey, Marshall A. Thompson, Katie M. Campbell, B. Kamphaus, Zaid Bustami, Sandra Santulli-Marotto, Daniel K. Wells, S. Boffo, Lisa Salvador, P. Scumpia, Christine N. Spencer, Adam Schoenfeld, Antoni Ribas, L. Kitch
{"title":"1292 A reproducible pipeline for analysis of multiplex imaging (MIBI) data with application to uncovering novel features of the tumor-immune microenvironment","authors":"Jessica Maxey, Marshall A. Thompson, Katie M. Campbell, B. Kamphaus, Zaid Bustami, Sandra Santulli-Marotto, Daniel K. Wells, S. Boffo, Lisa Salvador, P. Scumpia, Christine N. Spencer, Adam Schoenfeld, Antoni Ribas, L. Kitch","doi":"10.1136/jitc-2022-sitc2022.1292","DOIUrl":null,"url":null,"abstract":"Background Although immune checkpoint inhibition (ICI) has been transformational, tumor-associated factors regulating response have not been elucidated. High-dimensional spatial profiling technologies have enabled simultaneous investigation of many protein targets on individual cells within the spatial context of the tumor microenvironment (TME). Analysis of these data to uncover immune and tumor profiles relies on identification of individual cells and characterization of their specific marker expression to classify lineage and functional state. However, robust automated cell type assignment remains a key challenge in multiplex image data analysis. Here, we describe a reproducible pipeline for single cell identification and typing from multiplex ion beam imaging (MIBI) data uti-lizing lineage protein expression, which has applications in the context of precision immunotherapy and beyond.","PeriodicalId":398566,"journal":{"name":"Regular and Young Investigator Award Abstracts","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Young Investigator Award Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/jitc-2022-sitc2022.1292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background Although immune checkpoint inhibition (ICI) has been transformational, tumor-associated factors regulating response have not been elucidated. High-dimensional spatial profiling technologies have enabled simultaneous investigation of many protein targets on individual cells within the spatial context of the tumor microenvironment (TME). Analysis of these data to uncover immune and tumor profiles relies on identification of individual cells and characterization of their specific marker expression to classify lineage and functional state. However, robust automated cell type assignment remains a key challenge in multiplex image data analysis. Here, we describe a reproducible pipeline for single cell identification and typing from multiplex ion beam imaging (MIBI) data uti-lizing lineage protein expression, which has applications in the context of precision immunotherapy and beyond.
1292用于多重成像(MIBI)数据分析的可重复管道,用于揭示肿瘤免疫微环境的新特征
背景虽然免疫检查点抑制(ICI)已经转化,肿瘤相关因子调节反应尚未阐明。高维空间分析技术能够在肿瘤微环境(TME)的空间背景下同时研究单个细胞上的许多蛋白质靶点。对这些数据进行分析以揭示免疫和肿瘤概况,依赖于对单个细胞的鉴定和对其特定标记表达的表征,从而对谱系和功能状态进行分类。然而,在多路图像数据分析中,鲁棒的自动细胞类型分配仍然是一个关键挑战。在这里,我们描述了利用谱系蛋白表达从多重离子束成像(MIBI)数据中进行单细胞鉴定和分型的可重复管道,该管道在精确免疫治疗及其他领域具有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信