{"title":"A new non-redundant objective set generation algorithm in many-objective optimization problems","authors":"Xiaofang Guo, Yuping Wang, Xiaoli Wang, Jingxuan Wei","doi":"10.1109/CEC.2015.7257243","DOIUrl":null,"url":null,"abstract":"Among the many-objective optimization problems, there exists a kind of problem with redundant objectives, it is possible to design effective algorithms by removing the redundant objectives and keeping the non-redundant objectives so that the original problem becomes the one with much fewer objectives. In this paper, a new non-redundant objective set generation algorithm is proposed. To do so, first, a multi-objective evolutionary algorithm based decomposition is adopted to generate a small number of representative non-dominated solutions widely distributed on the Pareto front. Then, the conflicting objective pairs are identified through these non-dominated solutions, and the non-redundant objective set is determined by these pairs. Finally, the experiments are conducted on a set of benchmark test problems and the results indicate the effectiveness and efficiency of the proposed algorithm.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Among the many-objective optimization problems, there exists a kind of problem with redundant objectives, it is possible to design effective algorithms by removing the redundant objectives and keeping the non-redundant objectives so that the original problem becomes the one with much fewer objectives. In this paper, a new non-redundant objective set generation algorithm is proposed. To do so, first, a multi-objective evolutionary algorithm based decomposition is adopted to generate a small number of representative non-dominated solutions widely distributed on the Pareto front. Then, the conflicting objective pairs are identified through these non-dominated solutions, and the non-redundant objective set is determined by these pairs. Finally, the experiments are conducted on a set of benchmark test problems and the results indicate the effectiveness and efficiency of the proposed algorithm.