Audio Acoustic Features Based Tagging and Comparative Analysis of its Classifications

Somya Goel, Raghav Pangasa, Suma Dawn, Anuja Arora
{"title":"Audio Acoustic Features Based Tagging and Comparative Analysis of its Classifications","authors":"Somya Goel, Raghav Pangasa, Suma Dawn, Anuja Arora","doi":"10.1109/IC3.2018.8530512","DOIUrl":null,"url":null,"abstract":"Musical genres can be used to distribute and manage music datasets to increase the ease in finding a music piece a person wants to listen to. This paper presents a research for creating a suitable model for genre recognition in audio files using machine learning classifiers on the IRMAS11 https://www.upf.edu/web/mtg/irmas dataset. Python language library pyAudinAnalysls22 https://github.com/tyiannak/pyAudioAnalysis for extracting features from audio files is used. Further, three base classifiers, namely Support Vector Machines (SVM), Decision Tree and Random Forest are also depicted. IRMAS [10] genre dataset provides 6705 audio files of four genres classical, country folk, jazz and pop-rock. Also explored is an ensemble classification model by creating a stack of classifiers for the genre recognition task. Genre classification using SMOTE has been characterized in the confusion matrix. Maximum accuracy of 81.56% using the ensemble classifier is achieved using the proposed methodology.","PeriodicalId":118388,"journal":{"name":"2018 Eleventh International Conference on Contemporary Computing (IC3)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eleventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2018.8530512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Musical genres can be used to distribute and manage music datasets to increase the ease in finding a music piece a person wants to listen to. This paper presents a research for creating a suitable model for genre recognition in audio files using machine learning classifiers on the IRMAS11 https://www.upf.edu/web/mtg/irmas dataset. Python language library pyAudinAnalysls22 https://github.com/tyiannak/pyAudioAnalysis for extracting features from audio files is used. Further, three base classifiers, namely Support Vector Machines (SVM), Decision Tree and Random Forest are also depicted. IRMAS [10] genre dataset provides 6705 audio files of four genres classical, country folk, jazz and pop-rock. Also explored is an ensemble classification model by creating a stack of classifiers for the genre recognition task. Genre classification using SMOTE has been characterized in the confusion matrix. Maximum accuracy of 81.56% using the ensemble classifier is achieved using the proposed methodology.
基于声学特征的标记及其分类比较分析
音乐类型可以用于分发和管理音乐数据集,以增加查找一个人想听的音乐片段的便利性。本文介绍了在IRMAS11 https://www.upf.edu/web/mtg/irmas数据集上使用机器学习分类器创建适合音频文件类型识别的模型的研究。使用Python语言库pyAudinAnalysls22 https://github.com/tyiannak/pyAudioAnalysis从音频文件中提取特征。此外,还描述了三种基本分类器,即支持向量机(SVM)、决策树和随机森林。IRMAS[10]类型数据集提供了古典、乡村民谣、爵士和流行摇滚四种类型的6705个音频文件。还探讨了通过为类型识别任务创建一堆分类器的集成分类模型。使用SMOTE的类型分类已经在混淆矩阵中得到表征。使用所提出的方法,使用集成分类器实现了81.56%的最大准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信