Translation Hypersurfaces in Euclidean 4-Spaces

Ipek Akkilin, Salim Yuce
{"title":"Translation Hypersurfaces in Euclidean 4-Spaces","authors":"Ipek Akkilin, Salim Yuce","doi":"10.52280//pujm.2022.541201","DOIUrl":null,"url":null,"abstract":"In this article, the translation hypersurfaces in Euclidean 4- space are defined as the sum of three curves with distinct parameters with unit speed, and non-planar. These curves are called the generator curves of the hypersurface. Utilizing the hypersurface theory in Euclidean 4-space, unit normal vector field, shape (Weingarten) operator matrix, fundamental forms, Gaussian curvature and mean curvature have been expressed for the\ntranslation hypersurfaces. Finally, the computational example is stated to\nefficiency of the theoretical results.","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280//pujm.2022.541201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the translation hypersurfaces in Euclidean 4- space are defined as the sum of three curves with distinct parameters with unit speed, and non-planar. These curves are called the generator curves of the hypersurface. Utilizing the hypersurface theory in Euclidean 4-space, unit normal vector field, shape (Weingarten) operator matrix, fundamental forms, Gaussian curvature and mean curvature have been expressed for the translation hypersurfaces. Finally, the computational example is stated to efficiency of the theoretical results.
欧几里得4-空间中的平移超曲面
本文将欧几里得4空间中的平移超曲面定义为单位速度的三条参数不同的曲线的和,并且是非平面的。这些曲线被称为超曲面的生成曲线。利用欧几里得4空间中的超曲面理论,给出了平移超曲面的单位法向量场、形状(Weingarten)算子矩阵、基本形式、高斯曲率和平均曲率的表达式。最后,通过算例验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信