Consistency of the Modified Semi-Parametric MLE under the Linear Regression Model with Right-Censored Data

Qiqing Yu
{"title":"Consistency of the Modified Semi-Parametric MLE under the Linear Regression Model with Right-Censored Data","authors":"Qiqing Yu","doi":"10.18642/jsata_7100122213","DOIUrl":null,"url":null,"abstract":"Under the right censorship model and under the linear regression model where may not exist, the modified semi-parametric MLE (MSMLE) was proposed by Yu and Wong [17]. The MSMLE of satisfying infinitely often) if is discontinuous, and the simulation study suggests that it is also consistent and efficient under certain regularity conditions. In this paper, we establish the consistency of the MSMLE under the necessary and sufficient condition that is identifiable. Notice that under the latter assumption, the Buckley-James estimator and the median regression estimator can be inconsistent (see Yu and Dong [20]).","PeriodicalId":113994,"journal":{"name":"Journal of Statistics: Advances in Theory and Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistics: Advances in Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18642/jsata_7100122213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Under the right censorship model and under the linear regression model where may not exist, the modified semi-parametric MLE (MSMLE) was proposed by Yu and Wong [17]. The MSMLE of satisfying infinitely often) if is discontinuous, and the simulation study suggests that it is also consistent and efficient under certain regularity conditions. In this paper, we establish the consistency of the MSMLE under the necessary and sufficient condition that is identifiable. Notice that under the latter assumption, the Buckley-James estimator and the median regression estimator can be inconsistent (see Yu and Dong [20]).
右截数据线性回归模型下修正半参数最大似然的一致性
在正确审查模型和可能不存在的线性回归模型下,Yu和Wong[17]提出了改进的半参数MLE (MSMLE)。仿真研究表明,在一定的正则性条件下,满足无限次幂的最小二乘最小二乘是不连续的,也是一致的和有效的。本文在可识别的充分必要条件下,建立了MSMLE的一致性。注意在后一种假设下,Buckley-James估计量和中位数回归估计量可能不一致(参见Yu和Dong[20])。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信