Efficient optimization and processing for distributed monitoring and control applications

PhD '12 Pub Date : 2012-05-20 DOI:10.1145/2213598.2213615
Mengmeng Liu
{"title":"Efficient optimization and processing for distributed monitoring and control applications","authors":"Mengmeng Liu","doi":"10.1145/2213598.2213615","DOIUrl":null,"url":null,"abstract":"In recent years, we have seen an increasing number of applications in networking, sensor networks, cloud computing, and environmental monitoring, that aim to monitor, control, and make decisions over large volumes of dynamic data. In my dissertation, we aim to enable a generic framework for these distributed monitoring and control applications, and address the limitations of prior work such as data stream management systems and adaptive query processing systems. In particular, we make the following contributions: 1) supporting the maintenance of recursive queries over distributed data streams, 2) enabling full-fledged cost-based incremental query re-optimization, and 3) as ongoing work, incorporating the cost estimation of plan switching during query re-optimization. Our solutions are implemented and evaluated using our prototype system Aspen, over a variety of workloads and benchmarks. In addition, our prototype system Aspen enables an end-to-end framework to support control and decision-making over integrated data streams from both the physical world (e.g., sensor streams) and the digital world (e.g., web, streams, databases).","PeriodicalId":335125,"journal":{"name":"PhD '12","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhD '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213598.2213615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In recent years, we have seen an increasing number of applications in networking, sensor networks, cloud computing, and environmental monitoring, that aim to monitor, control, and make decisions over large volumes of dynamic data. In my dissertation, we aim to enable a generic framework for these distributed monitoring and control applications, and address the limitations of prior work such as data stream management systems and adaptive query processing systems. In particular, we make the following contributions: 1) supporting the maintenance of recursive queries over distributed data streams, 2) enabling full-fledged cost-based incremental query re-optimization, and 3) as ongoing work, incorporating the cost estimation of plan switching during query re-optimization. Our solutions are implemented and evaluated using our prototype system Aspen, over a variety of workloads and benchmarks. In addition, our prototype system Aspen enables an end-to-end framework to support control and decision-making over integrated data streams from both the physical world (e.g., sensor streams) and the digital world (e.g., web, streams, databases).
分布式监控应用的高效优化和处理
近年来,我们在网络、传感器网络、云计算和环境监测方面看到了越来越多的应用,其目的是对大量动态数据进行监测、控制和决策。在我的论文中,我们的目标是为这些分布式监视和控制应用程序启用一个通用框架,并解决先前工作(如数据流管理系统和自适应查询处理系统)的局限性。特别是,我们做出了以下贡献:1)支持对分布式数据流的递归查询的维护,2)支持全面的基于成本的增量查询重新优化,以及3)作为正在进行的工作,在查询重新优化期间合并计划切换的成本估算。我们的解决方案是使用我们的原型系统Aspen在各种工作负载和基准测试中实现和评估的。此外,我们的原型系统Aspen使端到端框架能够支持对来自物理世界(例如,传感器流)和数字世界(例如,web,流,数据库)的集成数据流的控制和决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信