Fat triangles determine linearly many holes (computational geometry)

J. Matoušek, Nathaly Miller, J. Pach, M. Sharir, Shmuel Sifrony, E. Welzl
{"title":"Fat triangles determine linearly many holes (computational geometry)","authors":"J. Matoušek, Nathaly Miller, J. Pach, M. Sharir, Shmuel Sifrony, E. Welzl","doi":"10.1109/SFCS.1991.185347","DOIUrl":null,"url":null,"abstract":"It is shown that for every fixed delta >0 the following holds: if F is a union of n triangles, all of whose angles are at least delta , then the complement of F has O(n) connected components, and the boundary of F consists of O(n log log n) segments. This latter complexity becomes linear if all triangles are of roughly the same size or if they are all infinite wedges. A randomized algorithm that computes F in expected time O(n2/sup alpha (n)/ log n) is given. Several applications of these results are presented.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"9 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

It is shown that for every fixed delta >0 the following holds: if F is a union of n triangles, all of whose angles are at least delta , then the complement of F has O(n) connected components, and the boundary of F consists of O(n log log n) segments. This latter complexity becomes linear if all triangles are of roughly the same size or if they are all infinite wedges. A randomized algorithm that computes F in expected time O(n2/sup alpha (n)/ log n) is given. Several applications of these results are presented.<>
胖三角形确定线性多孔(计算几何)
证明了对于≥0的每一个固定的delta,如果F是n个三角形的并集,且所有三角形的角都至少为delta,则F的补有O(n)个连通分量,且F的边界由O(n log log n)个线段组成。如果所有三角形的大小大致相同,或者它们都是无限的楔形,那么后一种复杂性就会变成线性的。给出了在期望时间O(n2/sup alpha (n)/ log n)内计算F的随机化算法。介绍了这些结果的几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信