A Single Hierarchical Network for Face, Action Unit and Emotion Detection

Shreyank Jyoti, Garima Sharma, Abhinav Dhall
{"title":"A Single Hierarchical Network for Face, Action Unit and Emotion Detection","authors":"Shreyank Jyoti, Garima Sharma, Abhinav Dhall","doi":"10.1109/DICTA.2018.8615852","DOIUrl":null,"url":null,"abstract":"The deep neural network shows a consequential performance for a set of specific tasks. A system designed for some correlated task altogether can be feasible for ‘in the wild’ applications. This paper proposes a method for the face localization, Action Unit (AU) and emotion detection. The three different tasks are performed by a simultaneous hierarchical network which exploits the way of learning of neural networks. Such network can represent more relevant features than the individual network. Due to more complex structures and very deep networks, the deployment of neural networks for real life applications is a challenging task. The paper focuses to find an efficient trade-off between the performance and the complexity of the given tasks. This is done by exploring the advantages of optimization of the network for the given tasks by using separable convolutions, binarization and quantization. Four different databases (AffectNet, EmotioNet, RAF-DB and WiderFace) are used to evaluate the performance of our proposed approach by having a separate task specific database.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The deep neural network shows a consequential performance for a set of specific tasks. A system designed for some correlated task altogether can be feasible for ‘in the wild’ applications. This paper proposes a method for the face localization, Action Unit (AU) and emotion detection. The three different tasks are performed by a simultaneous hierarchical network which exploits the way of learning of neural networks. Such network can represent more relevant features than the individual network. Due to more complex structures and very deep networks, the deployment of neural networks for real life applications is a challenging task. The paper focuses to find an efficient trade-off between the performance and the complexity of the given tasks. This is done by exploring the advantages of optimization of the network for the given tasks by using separable convolutions, binarization and quantization. Four different databases (AffectNet, EmotioNet, RAF-DB and WiderFace) are used to evaluate the performance of our proposed approach by having a separate task specific database.
一种用于人脸、动作单元和情感检测的单一层次网络
深度神经网络在一系列特定任务中表现出相应的性能。为一些相关任务设计的系统对于“野外”应用程序是可行的。提出了一种人脸定位、动作单元(AU)和情感检测的方法。这三种不同的任务由一个分层网络同时执行,该网络利用神经网络的学习方式。这样的网络可以代表比单个网络更多的相关特征。由于更复杂的结构和非常深的网络,将神经网络部署到现实生活中的应用是一项具有挑战性的任务。本文的重点是在给定任务的性能和复杂性之间找到一个有效的权衡。这是通过使用可分离卷积、二值化和量化来探索给定任务的网络优化的优势来实现的。四个不同的数据库(AffectNet, EmotioNet, RAF-DB和WiderFace)被用来评估我们提出的方法的性能,通过有一个单独的任务特定的数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信