Evolutionary trees can be learned in polynomial time in the two-state general Markov model

Mary Cryan, L. A. Goldberg, P. Goldberg
{"title":"Evolutionary trees can be learned in polynomial time in the two-state general Markov model","authors":"Mary Cryan, L. A. Goldberg, P. Goldberg","doi":"10.1109/SFCS.1998.743494","DOIUrl":null,"url":null,"abstract":"The j-State General Markov Model of evolution M. Steel (1994) is a stochastic model concerned with the evolution of strings over an alphabet of size j. In particular, the Two-State General Markov Model of evolution generalises the well-known Cavender-Farris-Neyman model of evolution by removing the symmetry restriction (which requires that the probability that a '0'' turns into a '1' along an edge is the same as the probability that a '1' turns into a '0' along the edge). M. Farach and S. Kannan (1996) showed how to PAC-learn Markov Evolutionary Trees in the Cavender-Farris-Neyman model provided that the target tree satisfies the additional restriction that all pairs of leaves have a sufficiently high probability of being the same. We show how to remove both restrictions and thereby obtain the first polynomial-time PAC-learning algorithm (in the sense of Kearns et al.) for the general class of Two-State Markov Evolutionary Trees.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

Abstract

The j-State General Markov Model of evolution M. Steel (1994) is a stochastic model concerned with the evolution of strings over an alphabet of size j. In particular, the Two-State General Markov Model of evolution generalises the well-known Cavender-Farris-Neyman model of evolution by removing the symmetry restriction (which requires that the probability that a '0'' turns into a '1' along an edge is the same as the probability that a '1' turns into a '0' along the edge). M. Farach and S. Kannan (1996) showed how to PAC-learn Markov Evolutionary Trees in the Cavender-Farris-Neyman model provided that the target tree satisfies the additional restriction that all pairs of leaves have a sufficiently high probability of being the same. We show how to remove both restrictions and thereby obtain the first polynomial-time PAC-learning algorithm (in the sense of Kearns et al.) for the general class of Two-State Markov Evolutionary Trees.
在二态广义马尔可夫模型中,进化树可以在多项式时间内学习
进化的j-State一般马尔可夫模型m钢(1994)是一个随机模型关注的进化字符串大小的字母j。特别是,进化的两国一般马尔可夫模型对进化的知名Cavender-Farris-Neyman模型通过移除一对称性限制的概率(要求一个“0”变成了“1”在一个边缘的概率是一样的' 1 '变成' 0 '沿着边缘)。M. Farach和S. Kannan(1996)展示了如何在Cavender-Farris-Neyman模型中pac - learning马尔可夫进化树,前提是目标树满足所有对叶子具有足够高的相同概率的附加限制。我们展示了如何消除这两个限制,从而获得第一个多项式时间pac -学习算法(在Kearns等人的意义上),用于一般的两态马尔可夫进化树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信