{"title":"Playlist-Based Tag Propagation for Improving Music Auto-Tagging","authors":"Yi-Hsun Lin, Chia-Hao Chung, Homer H. Chen","doi":"10.23919/EUSIPCO.2018.8553318","DOIUrl":null,"url":null,"abstract":"The performance of a music auto-tagging system highly relies on the quality of the training dataset. In particular, each training song should have sufficient relevant tags. Tag propagation is a technique that creates additional tags for a song by passing the tags from other similar songs. In this paper, we present a novel tag propagation approach that exploits the song coherence of a playlist to improve the training of an auto-tagging model. The main idea is to share the tags between neighboring songs in a playlist and to optimize the auto-tagging model through a multi-task objective function. We test the proposed playlist-based approach on a convolutional neural network for music auto-tagging and show that it can indeed provide a significant performance improvement.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The performance of a music auto-tagging system highly relies on the quality of the training dataset. In particular, each training song should have sufficient relevant tags. Tag propagation is a technique that creates additional tags for a song by passing the tags from other similar songs. In this paper, we present a novel tag propagation approach that exploits the song coherence of a playlist to improve the training of an auto-tagging model. The main idea is to share the tags between neighboring songs in a playlist and to optimize the auto-tagging model through a multi-task objective function. We test the proposed playlist-based approach on a convolutional neural network for music auto-tagging and show that it can indeed provide a significant performance improvement.