Multi-organ Segmentation from Abdominal CT with Random Forest based Statistical Shape Model

Jiaqi Wu, Guangxu Li, Huimin Lu, Hyoungseop Kim
{"title":"Multi-organ Segmentation from Abdominal CT with Random Forest based Statistical Shape Model","authors":"Jiaqi Wu, Guangxu Li, Huimin Lu, Hyoungseop Kim","doi":"10.1145/3354031.3354042","DOIUrl":null,"url":null,"abstract":"An automatic multi-organ segmentation method from upper abdominal CT image is proposed in this paper. A group of statistical shape models for multiple organs are generated by learning the statistical distribution of organs' shapes and intensity profiles. Then, a random forest regression model is trained to find the candidate position to initialize the statistical shape model. The proposed method is evaluated at segmentation of four abdomen organs (spleen, right kidney, left kidney and liver) from training set of 26 cases of upper abdominal CT images. The accuracy shows that the initialization improves the accuracy for statistical shape model-based segmentation.","PeriodicalId":286321,"journal":{"name":"Proceedings of the 4th International Conference on Biomedical Signal and Image Processing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Biomedical Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3354031.3354042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An automatic multi-organ segmentation method from upper abdominal CT image is proposed in this paper. A group of statistical shape models for multiple organs are generated by learning the statistical distribution of organs' shapes and intensity profiles. Then, a random forest regression model is trained to find the candidate position to initialize the statistical shape model. The proposed method is evaluated at segmentation of four abdomen organs (spleen, right kidney, left kidney and liver) from training set of 26 cases of upper abdominal CT images. The accuracy shows that the initialization improves the accuracy for statistical shape model-based segmentation.
基于随机森林统计形状模型的腹部CT多器官分割
提出了一种基于上腹部CT图像的多器官自动分割方法。通过学习器官形状和强度分布的统计分布,生成一组多器官的统计形状模型。然后,训练随机森林回归模型寻找候选位置,初始化统计形状模型;通过对26例上腹部CT图像训练集中脾脏、右肾、左肾和肝脏四个腹部器官的分割,对该方法进行了评价。结果表明,初始化提高了基于统计形状模型的分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信