Supersymmetric field theories and geometric Langlands: The other side of the coin

A. Balasubramanian, J. Teschner
{"title":"Supersymmetric field theories and geometric\n Langlands: The other side of the coin","authors":"A. Balasubramanian, J. Teschner","doi":"10.1090/PSPUM/098/01723","DOIUrl":null,"url":null,"abstract":"This note announces results on the relations between the approach of Beilinson and Drinfeld to the geometric Langlands correspondence based on conformal field theory, the approach of Kapustin and Witten based on $N=4$ SYM, and the AGT-correspondence. The geometric Langlands correspondence is described as the Nekrasov-Shatashvili limit of a generalisation of the AGT-correspondence in the presence of surface operators. Following the approaches of Kapustin - Witten and Nekrasov - Witten we interpret some aspects of the resulting picture using an effective description in terms of two-dimensional sigma models having Hitchin's moduli spaces as target-manifold.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/098/01723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This note announces results on the relations between the approach of Beilinson and Drinfeld to the geometric Langlands correspondence based on conformal field theory, the approach of Kapustin and Witten based on $N=4$ SYM, and the AGT-correspondence. The geometric Langlands correspondence is described as the Nekrasov-Shatashvili limit of a generalisation of the AGT-correspondence in the presence of surface operators. Following the approaches of Kapustin - Witten and Nekrasov - Witten we interpret some aspects of the resulting picture using an effective description in terms of two-dimensional sigma models having Hitchin's moduli spaces as target-manifold.
超对称场论与几何朗兰兹:硬币的另一面
本文公布了基于共形场论的Beilinson和Drinfeld的方法与基于$N=4$ SYM的Kapustin和Witten的方法与agt -对应之间关系的结果。几何Langlands对应被描述为表面算子存在下agt对应的推广的Nekrasov-Shatashvili极限。根据Kapustin - Witten和Nekrasov - Witten的方法,我们使用以Hitchin模空间为目标流形的二维sigma模型的有效描述来解释结果图的某些方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信