Model Transformation for Enhanced Parameter Identification of Linear Dynamic Systems

Leonam S. D. Pecly, K. Hashtrudi-Zaad
{"title":"Model Transformation for Enhanced Parameter Identification of Linear Dynamic Systems","authors":"Leonam S. D. Pecly, K. Hashtrudi-Zaad","doi":"10.1109/CCTA41146.2020.9206281","DOIUrl":null,"url":null,"abstract":"System dynamics identification has an important role in engineering, such as for modeling, simulation of dynamic mechanisms and controller design. The accuracy of estimation certainly depends on how the input variables used for estimation are obtained. Often higher order derivatives of the measured independent variables suffer from noise and quantization error compromising the estimation accuracy and conversion. In this paper, we propose a method to avoid successive numerical differentiation for enhanced identification. The proposed method is evaluated using the Least Squares identification method through simulations of twenty sets of dynamic parameters and experiments on a single degree-of-freedom platform. The performance is evaluated in terms of parameter convergence and output prediction.","PeriodicalId":241335,"journal":{"name":"2020 IEEE Conference on Control Technology and Applications (CCTA)","volume":"35 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA41146.2020.9206281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

System dynamics identification has an important role in engineering, such as for modeling, simulation of dynamic mechanisms and controller design. The accuracy of estimation certainly depends on how the input variables used for estimation are obtained. Often higher order derivatives of the measured independent variables suffer from noise and quantization error compromising the estimation accuracy and conversion. In this paper, we propose a method to avoid successive numerical differentiation for enhanced identification. The proposed method is evaluated using the Least Squares identification method through simulations of twenty sets of dynamic parameters and experiments on a single degree-of-freedom platform. The performance is evaluated in terms of parameter convergence and output prediction.
线性动态系统增强参数辨识的模型变换
系统动力学辨识在工程中具有重要的作用,如动力学机构的建模、仿真和控制器设计。估计的准确性当然取决于如何获得用于估计的输入变量。被测自变量的高阶导数经常受到噪声和量化误差的影响,影响估计精度和转换。在本文中,我们提出了一种避免连续数值微分的方法来增强识别。通过20组动态参数的仿真和单自由度平台上的实验,利用最小二乘辨识法对该方法进行了验证。从参数收敛性和输出预测两方面评价了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信