Brain image classification based on automated morphometry and penalised linear discriminant analysis with resampling

E. Janousová, D. Schwarz, G. Montana, T. Kašpárek
{"title":"Brain image classification based on automated morphometry and penalised linear discriminant analysis with resampling","authors":"E. Janousová, D. Schwarz, G. Montana, T. Kašpárek","doi":"10.15439/2015F147","DOIUrl":null,"url":null,"abstract":"This paper presents a new data-driven classification pipeline for discriminating two groups of individuals based on the medical images of their brain. The algorithm combines deformation-based morphometry and penalised linear discriminant analysis with resampling. The method is based on sparse representation of the original brain images using deformation logarithms reflecting the differences in the brain in comparison to the normal template anatomy. The sparse data enables efficient data reduction and classification via the penalised linear discriminant analysis with resampling. The classification accuracy obtained in an experiment with magnetic resonance brain images of first episode schizophrenia patients and healthy controls is comparable to the related state-of-the-art studies.","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new data-driven classification pipeline for discriminating two groups of individuals based on the medical images of their brain. The algorithm combines deformation-based morphometry and penalised linear discriminant analysis with resampling. The method is based on sparse representation of the original brain images using deformation logarithms reflecting the differences in the brain in comparison to the normal template anatomy. The sparse data enables efficient data reduction and classification via the penalised linear discriminant analysis with resampling. The classification accuracy obtained in an experiment with magnetic resonance brain images of first episode schizophrenia patients and healthy controls is comparable to the related state-of-the-art studies.
基于自动形态测量和重采样惩罚线性判别分析的脑图像分类
本文提出了一种新的数据驱动的分类管道,用于基于大脑的医学图像来区分两组个体。该算法结合了基于变形的形态测量和重采样的惩罚线性判别分析。该方法基于原始大脑图像的稀疏表示,使用变形对数反映了与正常模板解剖相比大脑的差异。稀疏数据通过重采样惩罚线性判别分析实现有效的数据缩减和分类。用首发精神分裂症患者和健康对照者的脑磁共振图像进行的分类准确率与相关的最新研究相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信