{"title":"Spacetime at the Planck Scale: The Quantum Computer View","authors":"P. Zizzi","doi":"10.1142/9789812773258_0030","DOIUrl":null,"url":null,"abstract":"We assume that space-time at the Planck scale is discrete, quantised in Planck units and \"qubitsed\" (each pixel of Planck area encodes one qubit), that is, quantum space-time can be viewed as a quantum computer. Within this model, one finds that quantum space-time itself is entangled, and can quantum-evaluate Boolean functions which are the laws of Physics in their discrete and fundamental form.","PeriodicalId":162928,"journal":{"name":"Fundamental Physics at the Vigier Centenary","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Physics at the Vigier Centenary","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789812773258_0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We assume that space-time at the Planck scale is discrete, quantised in Planck units and "qubitsed" (each pixel of Planck area encodes one qubit), that is, quantum space-time can be viewed as a quantum computer. Within this model, one finds that quantum space-time itself is entangled, and can quantum-evaluate Boolean functions which are the laws of Physics in their discrete and fundamental form.