{"title":"Evaluating ISO C++ Parallel Algorithms on Heterogeneous HPC Systems","authors":"Wei-Chen Lin, Tom Deakin, Simon McIntosh-Smith","doi":"10.1109/PMBS56514.2022.00009","DOIUrl":null,"url":null,"abstract":"Recent revisions to the ISO C++ standard have added specifications for parallel algorithms. These additions cover common use-cases, including sequence traversal, reduction, and even sorting, many of which are highly applicable in HPC, and thus represent a potential for increased performance and productivity.This study evaluates the state of the art for implementing heterogeneous HPC applications using the latest built-in ISO C++17 parallel algorithms. We implement C++17 ports of representative HPC mini-apps that cover both compute-bound and memory bandwidth-bound applications. We then conduct benchmarks on CPUs and GPUs, comparing our ports to other widely-available parallel programming models, such as OpenMP, CUDA, and SYCL.Finally, we show that C++17 parallel algorithms are able to achieve competitive performance across multiple mini-apps on many platforms, with some notable exceptions. We also discuss several key topics, including portability, and describe workarounds for a number of remaining issues, including index-based traversal and accelerator device/memory management.","PeriodicalId":321991,"journal":{"name":"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMBS56514.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recent revisions to the ISO C++ standard have added specifications for parallel algorithms. These additions cover common use-cases, including sequence traversal, reduction, and even sorting, many of which are highly applicable in HPC, and thus represent a potential for increased performance and productivity.This study evaluates the state of the art for implementing heterogeneous HPC applications using the latest built-in ISO C++17 parallel algorithms. We implement C++17 ports of representative HPC mini-apps that cover both compute-bound and memory bandwidth-bound applications. We then conduct benchmarks on CPUs and GPUs, comparing our ports to other widely-available parallel programming models, such as OpenMP, CUDA, and SYCL.Finally, we show that C++17 parallel algorithms are able to achieve competitive performance across multiple mini-apps on many platforms, with some notable exceptions. We also discuss several key topics, including portability, and describe workarounds for a number of remaining issues, including index-based traversal and accelerator device/memory management.