Decision templates for the classification of bioacoustic time series

C. Dietrich, G. Palm, F. Schwenker
{"title":"Decision templates for the classification of bioacoustic time series","authors":"C. Dietrich, G. Palm, F. Schwenker","doi":"10.1109/NNSP.2002.1030027","DOIUrl":null,"url":null,"abstract":"The classification of time series is topic of this paper. In particular we discuss the combination of multiple classifier outputs with decision templates. The decision templates are calculated over a set of feature vectors which are extracted in local time windows. To learn characteristic classifier outputs of time series a set of decision templates is determined for the individual classes. We present algorithms to calculate multiple decision templates, and demonstrate the behaviour of this new approach on a real world data set from the field of bioacoustics.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

The classification of time series is topic of this paper. In particular we discuss the combination of multiple classifier outputs with decision templates. The decision templates are calculated over a set of feature vectors which are extracted in local time windows. To learn characteristic classifier outputs of time series a set of decision templates is determined for the individual classes. We present algorithms to calculate multiple decision templates, and demonstrate the behaviour of this new approach on a real world data set from the field of bioacoustics.
生物声学时间序列分类决策模板
本文主要研究时间序列的分类问题。我们特别讨论了多个分类器输出与决策模板的组合。决策模板是在一组特征向量上计算的,这些特征向量是在局部时间窗口中提取的。为了学习时间序列的特征分类器输出,为单个类确定了一组决策模板。我们提出了计算多个决策模板的算法,并在生物声学领域的真实世界数据集上展示了这种新方法的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信