Automated segmentation of brain lesion based on diffusion-weighted MRI using a split and merge approach

N. Saad, S. Abu-Bakar, S. Muda, M. Mokji
{"title":"Automated segmentation of brain lesion based on diffusion-weighted MRI using a split and merge approach","authors":"N. Saad, S. Abu-Bakar, S. Muda, M. Mokji","doi":"10.1109/IECBES.2010.5742284","DOIUrl":null,"url":null,"abstract":"This paper presents a segmentation of brain lesion from diffusion-weighted magnetic resonance images (DW-MRI or DWI) using a split and merge approach. The lesions are hyperintense lesion from tumour, acute infarction, haemorrhage and abscess, and hypointense lesion from chronic infarction and haemorrhage. Pre-processing is applied to the DWI for intensity normalization, background removal and intensity enhancement. Then, the split and merge algorithm is designed to segment the lesion. Histogram thresholding technique is used at each split level to detect pixels with either hyperintense or hypointense. Several statistical features are discussed and evaluated to select the best feature as homogeneity criteria. The analysis shows that mean and number of lesion pixels are the best homogeneity criteria. Hyperintense and hypointense lesions are segmented automatically by merging the regions that are homogenous according to the criteria.","PeriodicalId":241343,"journal":{"name":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES.2010.5742284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents a segmentation of brain lesion from diffusion-weighted magnetic resonance images (DW-MRI or DWI) using a split and merge approach. The lesions are hyperintense lesion from tumour, acute infarction, haemorrhage and abscess, and hypointense lesion from chronic infarction and haemorrhage. Pre-processing is applied to the DWI for intensity normalization, background removal and intensity enhancement. Then, the split and merge algorithm is designed to segment the lesion. Histogram thresholding technique is used at each split level to detect pixels with either hyperintense or hypointense. Several statistical features are discussed and evaluated to select the best feature as homogeneity criteria. The analysis shows that mean and number of lesion pixels are the best homogeneity criteria. Hyperintense and hypointense lesions are segmented automatically by merging the regions that are homogenous according to the criteria.
基于弥散加权MRI的脑损伤自动分割
本文提出了一种使用分裂和合并方法从扩散加权磁共振图像(DW-MRI或DWI)中分割脑病变的方法。肿瘤、急性梗死、出血、脓肿引起的高信号病变和慢性梗死、出血引起的低信号病变。对DWI进行预处理,进行强度归一化、背景去除和强度增强。然后,设计了分割合并算法对病灶进行分割。直方图阈值技术在每个分割水平上检测高或低强度的像素。讨论和评估了几种统计特征,以选择最佳特征作为同质性标准。分析表明,病灶像素的均值和数目是最佳的均匀性准则。通过合并符合标准的同质区域,自动分割高、低信号病变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信