Category Differences Matter: A Broad Analysis of Inter-Category Error in Semantic Segmentation

Jingxing Zhou, Jürgen Beyerer
{"title":"Category Differences Matter: A Broad Analysis of Inter-Category Error in Semantic Segmentation","authors":"Jingxing Zhou, Jürgen Beyerer","doi":"10.1109/CVPRW59228.2023.00401","DOIUrl":null,"url":null,"abstract":"In current evaluation schemes of semantic segmentation, metrics are calculated in such a way that all predicted classes should equally be identical to their ground truth, paying less attention to the various manifestations of the false predictions within the object category. In this work, we propose the Critical Error Rate (CER) as a supplement to the current evaluation metrics, focusing on the error rate, which reflects predictions that fall outside of the category from the ground truth. We conduct a series of experiments evaluating the behavior of different network architectures in various evaluation setups, including domain shift, the introduction of novel classes, and a mixture of these. We demonstrate the essential criteria for network generalization with those experiments. Furthermore, we ablate the impact of utilizing various class taxonomies for the evaluation of out-of-category error.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In current evaluation schemes of semantic segmentation, metrics are calculated in such a way that all predicted classes should equally be identical to their ground truth, paying less attention to the various manifestations of the false predictions within the object category. In this work, we propose the Critical Error Rate (CER) as a supplement to the current evaluation metrics, focusing on the error rate, which reflects predictions that fall outside of the category from the ground truth. We conduct a series of experiments evaluating the behavior of different network architectures in various evaluation setups, including domain shift, the introduction of novel classes, and a mixture of these. We demonstrate the essential criteria for network generalization with those experiments. Furthermore, we ablate the impact of utilizing various class taxonomies for the evaluation of out-of-category error.
范畴差异很重要:语义切分中范畴间错误的广义分析
在目前的语义分割评估方案中,度量的计算方式是这样的,即所有预测的类都应该与它们的基础真理相同,而不太关注对象类别内错误预测的各种表现。在这项工作中,我们提出了临界错误率(CER)作为当前评估指标的补充,重点关注错误率,它反映了从基本事实中落在类别之外的预测。我们进行了一系列实验,评估不同网络架构在各种评估设置中的行为,包括领域转移、新类的引入以及这些的混合。我们通过这些实验证明了网络泛化的基本准则。此外,我们消除了利用各种类分类法评估类外误差的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信