The Bogomolov-Beauville-Yau decomposition for klt projective varieties with trivial first Chern class - without tears

F. Campana
{"title":"The Bogomolov-Beauville-Yau decomposition for klt projective varieties with trivial first Chern class - without tears","authors":"F. Campana","doi":"10.24033/BSMF.2823","DOIUrl":null,"url":null,"abstract":"We give a simplified proof (in characteristic zero) of the decomposition theorem for complex projective varieties with klt singularities and numerically trivial canonical bundle. The proof rests in an essential way on most of the partial results of the previous proof obtained by many authors, but avoids those in positive characteristic by S. Druel. The single to some extent new contribution is an algebraicity and bimeromorphic splitting result for generically locally trivial fibrations with fibres without holomorphic vector fields. We give first the proof in the easier smooth case, following the same steps as in the general case, treated next.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24033/BSMF.2823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We give a simplified proof (in characteristic zero) of the decomposition theorem for complex projective varieties with klt singularities and numerically trivial canonical bundle. The proof rests in an essential way on most of the partial results of the previous proof obtained by many authors, but avoids those in positive characteristic by S. Druel. The single to some extent new contribution is an algebraicity and bimeromorphic splitting result for generically locally trivial fibrations with fibres without holomorphic vector fields. We give first the proof in the easier smooth case, following the same steps as in the general case, treated next.
具有平凡第一chen类的klt投影变量的Bogomolov-Beauville-Yau分解
给出了具有klt奇异点和数值平凡正则束的复射影变的分解定理的一个简化证明(在特征零点上)。该证明在本质上依赖于许多作者先前证明的大部分部分结果,但避免了S. Druel的肯定特征。单一的新贡献在一定程度上是对不含全纯向量场的纤维的一般局部平凡纤维的代数性和双亚纯分裂结果。我们首先给出比较简单的光滑情形的证明,步骤与一般情形相同,然后再加以处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信