M. Soleymani, Joep J. M. Kierkels, G. Chanel, T. Pun
{"title":"A Bayesian framework for video affective representation","authors":"M. Soleymani, Joep J. M. Kierkels, G. Chanel, T. Pun","doi":"10.1109/ACII.2009.5349563","DOIUrl":null,"url":null,"abstract":"Emotions that are elicited in response to a video scene contain valuable information for multimedia tagging and indexing. The novelty of this paper is to introduce a Bayesian classification framework for affective video tagging that allows taking contextual information into account. A set of 21 full length movies was first segmented and informative content-based features were extracted from each shot and scene. Shots were then emotionally annotated, providing ground truth affect. The arousal of shots was computed using a linear regression on the content-based features. Bayesian classification based on the shots arousal and content-based features allowed tagging these scenes into three affective classes, namely calm, positive excited and negative excited. To improve classification accuracy, two contextual priors have been proposed: the movie genre prior, and the temporal dimension prior consisting of the probability of transition between emotions in consecutive scenes. The f1 classification measure of 54.9% that was obtained on three emotional classes with a naïve Bayes classifier was improved to 63.4% after utilizing all the priors.","PeriodicalId":330737,"journal":{"name":"2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2009.5349563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76
Abstract
Emotions that are elicited in response to a video scene contain valuable information for multimedia tagging and indexing. The novelty of this paper is to introduce a Bayesian classification framework for affective video tagging that allows taking contextual information into account. A set of 21 full length movies was first segmented and informative content-based features were extracted from each shot and scene. Shots were then emotionally annotated, providing ground truth affect. The arousal of shots was computed using a linear regression on the content-based features. Bayesian classification based on the shots arousal and content-based features allowed tagging these scenes into three affective classes, namely calm, positive excited and negative excited. To improve classification accuracy, two contextual priors have been proposed: the movie genre prior, and the temporal dimension prior consisting of the probability of transition between emotions in consecutive scenes. The f1 classification measure of 54.9% that was obtained on three emotional classes with a naïve Bayes classifier was improved to 63.4% after utilizing all the priors.