A hybrid GA and SA algorithms for feature selection in recognition of hand-printed Farsi characters

R. Azmi, B. Pishgoo, N. Norozi, Maryam Koohzadi, Fahimeh Baesi
{"title":"A hybrid GA and SA algorithms for feature selection in recognition of hand-printed Farsi characters","authors":"R. Azmi, B. Pishgoo, N. Norozi, Maryam Koohzadi, Fahimeh Baesi","doi":"10.1109/ICICISYS.2010.5658728","DOIUrl":null,"url":null,"abstract":"In this research a hybrid feature selection technique based on genetic and simulated annealing algorithms is proposed. this approach is evaluated by using Bayesian classifier on a dataset of hand-printed Farsi characters which includes 100 samples for each 33 hand-printed characters. The acquired results have been improved by correction of Simulated Annealing through considering two minimum and maximum thresholds.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"350 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this research a hybrid feature selection technique based on genetic and simulated annealing algorithms is proposed. this approach is evaluated by using Bayesian classifier on a dataset of hand-printed Farsi characters which includes 100 samples for each 33 hand-printed characters. The acquired results have been improved by correction of Simulated Annealing through considering two minimum and maximum thresholds.
一种混合遗传算法和遗传算法在手印波斯语字符识别中的特征选择
本文提出了一种基于遗传算法和模拟退火算法的混合特征选择技术。该方法通过使用贝叶斯分类器对手印波斯语字符数据集进行评估,该数据集每33个手印字符包含100个样本。通过考虑两个最小和最大阈值,对所得结果进行了模拟退火校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信