Inverse Synthetic-Aperture Radar(ISAR) Images Recognition Using Deep Learning

Abhishek Avadhani, Sayli Chaudhari, Pehlaj Gacheria, Stuti Ahuja
{"title":"Inverse Synthetic-Aperture Radar(ISAR) Images Recognition Using Deep Learning","authors":"Abhishek Avadhani, Sayli Chaudhari, Pehlaj Gacheria, Stuti Ahuja","doi":"10.1109/ACCTHPA49271.2020.9213223","DOIUrl":null,"url":null,"abstract":"We propose a method to recognize and classify inverse synthetic-aperture radar (ISAR) images of a target. The information that is combined from various image frames, it is generally in the context of time-averaging to remove statistically atomic noise shifts in the images. Due to wave action, a ship has constantly changing roll, yaw and pitch angular velocities, which makes the ISAR images quite changeable from frame to frame. A method for identifying the target based on 3D dispersed information from a sequence of 2D ISAR images is elucidated. A Trained-Model will be given an ISAR image as an input; and this model will use an image classifier based on deep learning to recognize and classify the images.","PeriodicalId":191794,"journal":{"name":"2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCTHPA49271.2020.9213223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a method to recognize and classify inverse synthetic-aperture radar (ISAR) images of a target. The information that is combined from various image frames, it is generally in the context of time-averaging to remove statistically atomic noise shifts in the images. Due to wave action, a ship has constantly changing roll, yaw and pitch angular velocities, which makes the ISAR images quite changeable from frame to frame. A method for identifying the target based on 3D dispersed information from a sequence of 2D ISAR images is elucidated. A Trained-Model will be given an ISAR image as an input; and this model will use an image classifier based on deep learning to recognize and classify the images.
基于深度学习的逆合成孔径雷达(ISAR)图像识别
提出了一种目标反合成孔径雷达(ISAR)图像的识别与分类方法。从各种图像帧中组合的信息,通常是在时间平均的背景下去除图像中的统计原子噪声偏移。由于波浪作用,船舶的横摇、偏航和俯仰角速度不断变化,使得ISAR图像在不同帧之间变化很大。阐述了一种基于二维ISAR图像序列中三维离散信息的目标识别方法。训练模型将获得ISAR图像作为输入;该模型将使用基于深度学习的图像分类器对图像进行识别和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信