Yang Zhang, Ruohan Zong, Lanyu Shang, Ziyi Kou, Dong Wang
{"title":"A deep contrastive learning approach to extremely-sparse disaster damage assessment in social sensing","authors":"Yang Zhang, Ruohan Zong, Lanyu Shang, Ziyi Kou, Dong Wang","doi":"10.1145/3487351.3488318","DOIUrl":null,"url":null,"abstract":"Social sensing has emerged as a pervasive and scalable sensing paradigm to obtain timely information of the physical world from \"human sensors\". In this paper, we study a new extremely-sparse disaster damage assessment (DBA) problem in social sensing. The objective is to automatically assess the damage severity of affected areas in a disaster event by leveraging the imagery data reported on online social media with extremely sparse training data (e.g., only 1% of the data samples have labels). Our problem is motivated by the limitation of current DDA solutions that often require a significant amount of high-quality training data to learn an effective DDA model. We identify two critical challenges in solving our problem: i) it remains to be a fundamental challenge on how to effectively train a reliable DDA model given the lack of sufficient damage severity labels; ii) it is a difficult task to capture the excessive and fine-grained damage-related features in each image for accurate damage assessment. In this paper, we propose ContrastDDA, a deep contrastive learning approach to address the extremely-sparse DDA problem by designing an integrated contrastive and augmentative neural network architecture for accurate disaster damage assessment using the extremely sparse training samples. The evaluation results on two real-world DDA applications demonstrate that ContrastDDA clearly outperforms state-of-the-art deep learning and semi-supervised learning baselines with the highest DDA accuracy under different application scenarios.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"9 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Social sensing has emerged as a pervasive and scalable sensing paradigm to obtain timely information of the physical world from "human sensors". In this paper, we study a new extremely-sparse disaster damage assessment (DBA) problem in social sensing. The objective is to automatically assess the damage severity of affected areas in a disaster event by leveraging the imagery data reported on online social media with extremely sparse training data (e.g., only 1% of the data samples have labels). Our problem is motivated by the limitation of current DDA solutions that often require a significant amount of high-quality training data to learn an effective DDA model. We identify two critical challenges in solving our problem: i) it remains to be a fundamental challenge on how to effectively train a reliable DDA model given the lack of sufficient damage severity labels; ii) it is a difficult task to capture the excessive and fine-grained damage-related features in each image for accurate damage assessment. In this paper, we propose ContrastDDA, a deep contrastive learning approach to address the extremely-sparse DDA problem by designing an integrated contrastive and augmentative neural network architecture for accurate disaster damage assessment using the extremely sparse training samples. The evaluation results on two real-world DDA applications demonstrate that ContrastDDA clearly outperforms state-of-the-art deep learning and semi-supervised learning baselines with the highest DDA accuracy under different application scenarios.