Monitoring Consciousness and Spatiotemporal Dynamics During Complex Focal Seizures

Ibtissem Khouaja, Imane Youkana, M. Saafi
{"title":"Monitoring Consciousness and Spatiotemporal Dynamics During Complex Focal Seizures","authors":"Ibtissem Khouaja, Imane Youkana, M. Saafi","doi":"10.1109/ATSIP49331.2020.9231891","DOIUrl":null,"url":null,"abstract":"The Electroencephalogram recording system plays a very important role to identify seizure occurrence and its severity range. Thus, it requires long-term video monitoring and visual interpretation from expert. In this paper, an intelligent seizure prediction algorithm is proposed allowing the prediction and localization of ictal excessive discharges and the control of consciousness impairment. The Extended Kalman Filter is employed to predict seizure occurrence. Secondly, a Spherical Spline interpolation algorithm is used to enhance the EEG spatial resolution. The algorithm was tested on 24 epileptic patients from two different databases. The proposed Method predict occurrence of all seizures before an average of 8 minutes, correctly localize ictal epileptic discharges and control their propagation on the scalp. These findings highlight the capacity to automatically extract useful spatio-temporal features from Cranial EEG.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Electroencephalogram recording system plays a very important role to identify seizure occurrence and its severity range. Thus, it requires long-term video monitoring and visual interpretation from expert. In this paper, an intelligent seizure prediction algorithm is proposed allowing the prediction and localization of ictal excessive discharges and the control of consciousness impairment. The Extended Kalman Filter is employed to predict seizure occurrence. Secondly, a Spherical Spline interpolation algorithm is used to enhance the EEG spatial resolution. The algorithm was tested on 24 epileptic patients from two different databases. The proposed Method predict occurrence of all seizures before an average of 8 minutes, correctly localize ictal epileptic discharges and control their propagation on the scalp. These findings highlight the capacity to automatically extract useful spatio-temporal features from Cranial EEG.
监测意识和时空动态在复杂局灶性癫痫发作
脑电图记录系统在识别癫痫发作及其严重程度方面起着非常重要的作用。因此,需要长期的视频监控和专家的视觉解读。本文提出了一种智能癫痫发作预测算法,可以预测和定位癫痫发作过度放电和控制意识障碍。应用扩展卡尔曼滤波预测癫痫发作。其次,采用球面样条插值算法提高脑电信号的空间分辨率;该算法在来自两个不同数据库的24名癫痫患者身上进行了测试。该方法平均在8分钟前预测所有癫痫发作的发生,正确定位癫痫发作放电并控制其在头皮上的传播。这些发现强调了从颅EEG中自动提取有用时空特征的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信