WWW'18 Open Challenge: Financial Opinion Mining and Question Answering

Macedo Maia, S. Handschuh, A. Freitas, Brian Davis, Ross McDermott, Manel Zarrouk, A. Balahur
{"title":"WWW'18 Open Challenge: Financial Opinion Mining and Question Answering","authors":"Macedo Maia, S. Handschuh, A. Freitas, Brian Davis, Ross McDermott, Manel Zarrouk, A. Balahur","doi":"10.1145/3184558.3192301","DOIUrl":null,"url":null,"abstract":"The growing maturity of Natural Language Processing (NLP) techniques and resources is dramatically changing the landscape of many application domains which are dependent on the analysis of unstructured data at scale. The finance domain, with its reliance on the interpretation of multiple unstructured and structured data sources and its demand for fast and comprehensive decision making is already emerging as a primary ground for the experimentation of NLP, Web Mining and Information Retrieval (IR) techniques for the automatic analysis of financial news and opinions online. This challenge focuses on advancing the state-of-the-art of aspect-based sentiment analysis and opinion-based Question Answering for the financial domain.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"101 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3192301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

Abstract

The growing maturity of Natural Language Processing (NLP) techniques and resources is dramatically changing the landscape of many application domains which are dependent on the analysis of unstructured data at scale. The finance domain, with its reliance on the interpretation of multiple unstructured and structured data sources and its demand for fast and comprehensive decision making is already emerging as a primary ground for the experimentation of NLP, Web Mining and Information Retrieval (IR) techniques for the automatic analysis of financial news and opinions online. This challenge focuses on advancing the state-of-the-art of aspect-based sentiment analysis and opinion-based Question Answering for the financial domain.
WWW'18开放挑战:金融意见挖掘与问答
自然语言处理(NLP)技术和资源的日益成熟正在极大地改变许多依赖于大规模非结构化数据分析的应用领域的格局。金融领域依赖于对多个非结构化和结构化数据源的解释,以及对快速全面决策的需求,已经成为NLP、网络挖掘和信息检索(IR)技术实验的主要基础,这些技术用于在线金融新闻和观点的自动分析。这项挑战的重点是推进金融领域基于方面的情感分析和基于意见的问答技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信