Bayesian strategies for calibrating heteroskedastic static sensors with unknown model structures

Anas W. Alhashimi, S. D. Favero, Damiano Varagnolo, T. Gustafsson, G. Pillonetto
{"title":"Bayesian strategies for calibrating heteroskedastic static sensors with unknown model structures","authors":"Anas W. Alhashimi, S. D. Favero, Damiano Varagnolo, T. Gustafsson, G. Pillonetto","doi":"10.23919/ECC.2018.8550201","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of calibrating sensors affected by (i) heteroskedastic measurement noise and (ii) a polynomial bias, describing a systematic distortion of the measured quantity. First, a set of increasingly complex statistical models for the measurement process was proposed. Then, for each model the authors design a Bayesian parameters estimation method handling heteroskedasticity and capable to exploit prior information about the model parameters. The Bayesian problem is solved using MCMC methods and reconstructing the unknown parameters posterior in sampled form. The authors then test the proposed techniques on a practically relevant case study, the calibration of Light Detection and Ranging (Lidar) sensor, and evaluate the different proposed procedures using both artificial and field data.","PeriodicalId":222660,"journal":{"name":"2018 European Control Conference (ECC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2018.8550201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper investigates the problem of calibrating sensors affected by (i) heteroskedastic measurement noise and (ii) a polynomial bias, describing a systematic distortion of the measured quantity. First, a set of increasingly complex statistical models for the measurement process was proposed. Then, for each model the authors design a Bayesian parameters estimation method handling heteroskedasticity and capable to exploit prior information about the model parameters. The Bayesian problem is solved using MCMC methods and reconstructing the unknown parameters posterior in sampled form. The authors then test the proposed techniques on a practically relevant case study, the calibration of Light Detection and Ranging (Lidar) sensor, and evaluate the different proposed procedures using both artificial and field data.
具有未知模型结构的异方差静态传感器的贝叶斯校正策略
本文研究了受(i)异方差测量噪声和(ii)多项式偏差影响的校准传感器的问题,描述了测量量的系统畸变。首先,提出了一套日益复杂的测量过程统计模型。然后,针对每个模型设计了一种处理异方差并能够利用模型参数先验信息的贝叶斯参数估计方法。采用MCMC方法求解贝叶斯问题,并以采样形式后验重建未知参数。然后,作者在一个实际相关的案例研究中测试了所提出的技术,即光探测和测距(Lidar)传感器的校准,并使用人工和现场数据评估了所提出的不同程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信