Computational Hyperspectral Imaging with Diffractive Optics and Deep Residual Network

Ayoung Kim, U. Akpinar, E. Sahin, A. Gotchev
{"title":"Computational Hyperspectral Imaging with Diffractive Optics and Deep Residual Network","authors":"Ayoung Kim, U. Akpinar, E. Sahin, A. Gotchev","doi":"10.1109/EUVIP53989.2022.9922696","DOIUrl":null,"url":null,"abstract":"Hyperspectral imaging critically serves for various fields such as remote sensing, biomedical and agriculture. Its potential can be exploited to a greater extent when combined with deep learning methods, which improve the reconstructed hyperspectral image quality and reduce the processing time. In this paper, we propose a novel snapshot hyperspectral imaging system using optimized diffractive optical element and color filter along with the residual dense network. We evaluate our method through simulations considering the effects of each optical element and noise. Simulation results demonstrate high-quality hyperspectral image reconstruction capabilities through the proposed computational hyperspectral camera.","PeriodicalId":120249,"journal":{"name":"2022 10th European Workshop on Visual Information Processing (EUVIP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP53989.2022.9922696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral imaging critically serves for various fields such as remote sensing, biomedical and agriculture. Its potential can be exploited to a greater extent when combined with deep learning methods, which improve the reconstructed hyperspectral image quality and reduce the processing time. In this paper, we propose a novel snapshot hyperspectral imaging system using optimized diffractive optical element and color filter along with the residual dense network. We evaluate our method through simulations considering the effects of each optical element and noise. Simulation results demonstrate high-quality hyperspectral image reconstruction capabilities through the proposed computational hyperspectral camera.
基于衍射光学和深度残差网络的计算高光谱成像
高光谱成像在遥感、生物医学和农业等各个领域发挥着重要作用。与深度学习方法相结合,可以更大程度地发挥其潜力,提高重建的高光谱图像质量,缩短处理时间。在本文中,我们提出了一种新的快照高光谱成像系统,该系统采用了优化的衍射光学元件和彩色滤光片以及残差密集网络。我们通过模拟来评估我们的方法,考虑了每个光学元件和噪声的影响。仿真结果表明,该计算型高光谱相机具有高质量的高光谱图像重建能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信