Vacuum Outgassing Study of Candidate Materials for Next Generation Pulsed Power and Accelerators: Improving the Boundary Conditions for Molecular Flow Simulations

S. Simpson, R. Goeke, P. Miller, K. Coombes, K. DeZetter, O. Johns, J. Leckbee, D. Nielsen, M. Sceiford
{"title":"Vacuum Outgassing Study of Candidate Materials for Next Generation Pulsed Power and Accelerators: Improving the Boundary Conditions for Molecular Flow Simulations","authors":"S. Simpson, R. Goeke, P. Miller, K. Coombes, K. DeZetter, O. Johns, J. Leckbee, D. Nielsen, M. Sceiford","doi":"10.1109/PPPS34859.2019.9009985","DOIUrl":null,"url":null,"abstract":"Next generation pulsed power (NGPP) machines and accelerators require a better understanding of the materials used within the vacuum vessels to achieve lower base pressures (P << 10−5 Torr) and reduce the overall contaminant inventory while incorporating various dielectric materials which tend to be unfavorable for ultra-high vacuum (UHV) applications. By improving the baseline vacuum, it may be possible to delay the onset of impedance collapse, reduce current loss on multi-mega Amp devices, or improve the lifetime of thermionic cathodes, etc [3]. In this study, we examine the vacuum outgassing rate of Rexolite® (cross-linked polystyrene) and Kel-F® (polychlorotrifluoroethylene) as candidate materials for vacuum insulators [1]. These values are then incorporated into boundary conditions for molecular flow simulations using COMSOL Multiphysics® and used to predict the performance of a prototypical pulsed power system designed for 10−8 Torr operations.","PeriodicalId":103240,"journal":{"name":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","volume":"49 3-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS34859.2019.9009985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Next generation pulsed power (NGPP) machines and accelerators require a better understanding of the materials used within the vacuum vessels to achieve lower base pressures (P << 10−5 Torr) and reduce the overall contaminant inventory while incorporating various dielectric materials which tend to be unfavorable for ultra-high vacuum (UHV) applications. By improving the baseline vacuum, it may be possible to delay the onset of impedance collapse, reduce current loss on multi-mega Amp devices, or improve the lifetime of thermionic cathodes, etc [3]. In this study, we examine the vacuum outgassing rate of Rexolite® (cross-linked polystyrene) and Kel-F® (polychlorotrifluoroethylene) as candidate materials for vacuum insulators [1]. These values are then incorporated into boundary conditions for molecular flow simulations using COMSOL Multiphysics® and used to predict the performance of a prototypical pulsed power system designed for 10−8 Torr operations.
新一代脉冲电源和加速器候选材料的真空除气研究:改进分子流模拟的边界条件
下一代脉冲功率(NGPP)机器和加速器需要更好地了解真空容器内使用的材料,以实现更低的基压(P << 10−5 Torr)并减少总体污染物库存,同时结合各种不利于超高真空(UHV)应用的介电材料。通过提高基线真空度,有可能延缓阻抗崩溃的发生,减少数兆安培器件的电流损耗,或提高热离子阴极的寿命等。在这项研究中,我们研究了Rexolite®(交联聚苯乙烯)和Kel-F®(聚氯三氟乙烯)作为真空绝缘体[1]的候选材料的真空脱气率。然后将这些值纳入使用COMSOL Multiphysics®进行分子流模拟的边界条件,并用于预测设计用于10 - 8 Torr操作的原型脉冲功率系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信