Lingfei Wang, Song-ang Peng, Z. Zong, Ling Li, Wen Wang, Guangwei Xu, Nianduan Lu, Z. Ji, Zhi Jin, Ming Liu
{"title":"A new surface potential based physical compact model for GFET in RF applications","authors":"Lingfei Wang, Song-ang Peng, Z. Zong, Ling Li, Wen Wang, Guangwei Xu, Nianduan Lu, Z. Ji, Zhi Jin, Ming Liu","doi":"10.1109/IEDM.2015.7409788","DOIUrl":null,"url":null,"abstract":"For the first time, we present a continuous surface potential based physical compact model for GFET and benchmark our work against device measurements. This model is based on semi-classical Boltzmann transport and thermally activated transport theories, including both remote and short range scattering mechanisms. Therefore the model is temperature dependent. Meanwhile, we provide the corresponding method to extract the key physical parameters. Furthermore, the compact model is coded in Verilog-A, and can be implemented in vendor CAD tools. The model provides a physics-based consistent description of DC and AC device characteristics and enables accurate circuit-level performance estimation and RF circuit design of GFET.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"32 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
For the first time, we present a continuous surface potential based physical compact model for GFET and benchmark our work against device measurements. This model is based on semi-classical Boltzmann transport and thermally activated transport theories, including both remote and short range scattering mechanisms. Therefore the model is temperature dependent. Meanwhile, we provide the corresponding method to extract the key physical parameters. Furthermore, the compact model is coded in Verilog-A, and can be implemented in vendor CAD tools. The model provides a physics-based consistent description of DC and AC device characteristics and enables accurate circuit-level performance estimation and RF circuit design of GFET.