Audio-Visual Co-Training for Vehicle Classification

Martin Godec, C. Leistner, H. Bischof, Andreas Starzacher, B. Rinner
{"title":"Audio-Visual Co-Training for Vehicle Classification","authors":"Martin Godec, C. Leistner, H. Bischof, Andreas Starzacher, B. Rinner","doi":"10.1109/AVSS.2010.31","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a fully autonomous vehicleclassification system that continuously learns from largeamounts of unlabeled data. For that purpose, we proposea novel on-line co-training method based on visual andacoustic information. Our system does not need complicatedmicrophone arrays or video calibration and automaticallyadapts to specific traffic scenes. These specialized detectorsare more accurate and more compact than generalclassifiers, which allows for light-weight usage in low-costand portable embedded systems. Hence, we implementedour system on an off-the-shelf embedded platform. In the experimentalpart, we show that the proposed method is ableto cover the desired task and outperforms single-cue systems.Furthermore, our co-training framework minimizesthe labeling effort without degrading the overall system performance.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we introduce a fully autonomous vehicleclassification system that continuously learns from largeamounts of unlabeled data. For that purpose, we proposea novel on-line co-training method based on visual andacoustic information. Our system does not need complicatedmicrophone arrays or video calibration and automaticallyadapts to specific traffic scenes. These specialized detectorsare more accurate and more compact than generalclassifiers, which allows for light-weight usage in low-costand portable embedded systems. Hence, we implementedour system on an off-the-shelf embedded platform. In the experimentalpart, we show that the proposed method is ableto cover the desired task and outperforms single-cue systems.Furthermore, our co-training framework minimizesthe labeling effort without degrading the overall system performance.
车辆分类的视听协同训练
在本文中,我们介绍了一个完全自主的车辆分类系统,该系统可以从大量未标记的数据中持续学习。为此,我们提出了一种基于视觉和听觉信息的在线协同训练方法。我们的系统不需要复杂的麦克风阵列或视频校准,可以自动适应特定的交通场景。这些专门的检测器比一般分类器更准确,更紧凑,这允许在低成本便携式嵌入式系统中轻量级使用。因此,我们在现成的嵌入式平台上实现了我们的系统。在实验部分,我们证明了所提出的方法能够覆盖所需的任务,并且优于单线索系统。此外,我们的协同训练框架在不降低整体系统性能的情况下最大限度地减少了标记工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信